CAREER: A Partial Order Approach to Dynamic Feedback in Multi-agent Decision and Control Systems
职业生涯:多智能体决策和控制系统中动态反馈的偏序方法
基本信息
- 批准号:1046733
- 负责人:
- 金额:$ 23.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Embedded systems, from automobiles and aircraft to autonomous robots for space exploration, are becoming ubiquitous. A future is envisioned in which large networks of increasingly autonomous embedded systems operate robustly and reliably. Increased levels of automation will require to on-line represent and process huge amounts of data for the design of control schemes that guarantee safety while maintaining performance. A bottleneck in advancement in this direction is complexity. Complexity is established by the natural scale of the system and by the interaction of the physical devices with logic-based control, which create a large number of system behaviors. Current methods in the control synthesis in embedded and hybrid systems usually assume small system size and perfect state measurements. While in some cases such assumptions are satisfied, several realistic applications have large system size and imperfect or partial measurements. To address these problems, this NSF CAREER project is developing a dynamic feedback approach (state estimation plus control) for the monitoring and recovery of multi-agent systems modeled as infinite state transition systems with logic and timed transitions. This approach relies on partial order theory as a key enabler to overcome computational difficulties arising from large system size and from the interaction of continuous evolution and logic. By exploiting partial order structures on the set of states and inputs, this method provides an efficient alternative to enumeration approaches and exhaustive searches, which are common practice in embedded programming. This research is expected to extend our current ability to build provably safe and reliable large-scale multi-agent systems, with potential impact on railway and air traffic control systems, intelligent transportation systems, and large robot teams in adversarial environments
从汽车和飞机到太空探索的自主机器人,嵌入式系统正在变得无处不在。未来的设想是,越来越自主的嵌入式系统的大型网络运行鲁棒性和可靠性。自动化水平的提高将需要在线表示和处理大量数据,以设计在保持性能的同时保证安全的控制方案。在这个方向上前进的瓶颈是复杂性。复杂性是由系统的自然规模和物理设备与基于逻辑的控制的交互建立的,这会产生大量的系统行为。 目前嵌入式和混合系统的控制综合方法通常假设系统规模小,状态测量完美。虽然在某些情况下,这样的假设是满足的,一些现实的应用程序有大的系统规模和不完善或部分的测量。为了解决这些问题,这个NSF CAREER项目正在开发一种动态反馈方法(状态估计加控制),用于监控和恢复多智能体系统,该系统被建模为具有逻辑和定时转换的无限状态转换系统。这种方法依赖于偏序理论作为一个关键的使能器,以克服计算困难所产生的大系统的大小和从连续的进化和逻辑的相互作用。通过利用状态和输入集合上的偏序结构,该方法为枚举方法和穷举搜索提供了一种有效的替代方案,这是嵌入式编程中的常见做法。这项研究有望扩展我们目前构建可证明安全可靠的大规模多智能体系统的能力,并对铁路和空中交通控制系统,智能交通系统以及对抗环境中的大型机器人团队产生潜在影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Domitilla Del Vecchio其他文献
The Effect of Loads in Molecular Communications
分子通讯中负载的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:20.6
- 作者:
Cameron McBride;Rushina Shah;Domitilla Del Vecchio - 通讯作者:
Domitilla Del Vecchio
The Effects of Ribosome Autocatalysis and Negative Feedback in Resource Competition
核糖体自催化和负反馈在资源竞争中的作用
- DOI:
10.1101/042127 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fiona Chandra;Domitilla Del Vecchio - 通讯作者:
Domitilla Del Vecchio
A Singular Singular Perturbation Problem Arising From a Class of Biomolecular Feedback Controllers
一类生物分子反馈控制器引起的奇异奇异扰动问题
- DOI:
10.1109/lcsys.2018.2845547 - 发表时间:
2019 - 期刊:
- 影响因子:3
- 作者:
Y. Qian;Domitilla Del Vecchio - 通讯作者:
Domitilla Del Vecchio
Realizing “integral control” in living cells: How to overcome leaky integration due to dilution?
实现活细胞的“积分控制”:如何克服稀释导致的积分泄漏?
- DOI:
10.1101/141051 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Y. Qian;Domitilla Del Vecchio - 通讯作者:
Domitilla Del Vecchio
Effects of spatial heterogeneity on bacterial genetic circuits
空间异质性对细菌遗传回路的影响
- DOI:
10.1101/2019.12.22.886473 - 发表时间:
2019 - 期刊:
- 影响因子:4.3
- 作者:
C. Barajas;Domitilla Del Vecchio - 通讯作者:
Domitilla Del Vecchio
Domitilla Del Vecchio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Domitilla Del Vecchio', 18)}}的其他基金
I-Corps: System for rapid detection of virus-loaded aerosol
I-Corps:快速检测载病毒气溶胶的系统
- 批准号:
2302151 - 财政年份:2023
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Reversible long-term memory devices in bacteria inspired by mammalian chromatin modification circuits
受哺乳动物染色质修饰电路启发,细菌中的可逆长期记忆装置
- 批准号:
2313877 - 财政年份:2023
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Uncovering and re-engineering chromatin modification circuits that dictate epigenetic cell memory
合作研究:MODULUS:揭示和重新设计决定表观遗传细胞记忆的染色质修饰电路
- 批准号:
2027949 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Workshop: Systems and Control Theory for Synthetic Biology
研讨会:合成生物学的系统和控制理论
- 批准号:
1941841 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
FET: Small: Scalable transcriptional programs through feedback regulation
FET:小型:通过反馈调节可扩展转录程序
- 批准号:
2007674 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
RoL: FELS: RAISE: Principles of Modular Organization in Resource-Limited Biological Circuits
RoL:FELS:RAISE:资源有限生物回路中的模块化组织原理
- 批准号:
1840257 - 财政年份:2018
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Quasi-Integral Control for Robustness to Perturbations of Integrated Genetic Devices in Living Cells for Biotechnology
生物技术活细胞中集成遗传装置对扰动鲁棒性的准积分控制
- 批准号:
1727189 - 财政年份:2017
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
GOALI: Hybrid Dynamic Feedback to Design Provably Correct Driving
GOALI:混合动态反馈设计可证明正确的驾驶
- 批准号:
1161893 - 财政年份:2012
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Formal Design of Semi-Autonomous Cyberphysical Transportation Systems
CPS:协同:协作研究:半自主网络物理运输系统的形式设计
- 批准号:
1239182 - 财政年份:2012
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: From Retroactivity to Modularity: Design and Implementation of a Genetic Insulation Device in Yeast
CIF:媒介:合作研究:从追溯性到模块化:酵母遗传绝缘装置的设计和实现
- 批准号:
1058127 - 财政年份:2010
- 资助金额:
$ 23.68万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Adaptive High Order Low-Rank Tensor Methods for High-Dimensional Partial Differential Equations with Application to Kinetic Simulations
高维偏微分方程的自适应高阶低阶张量方法及其在动力学模拟中的应用
- 批准号:
2111383 - 财政年份:2021
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
- 批准号:
19H00638 - 财政年份:2019
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
1763179 - 财政年份:2018
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Reduced-Order and Low-Rank Methods for Parameter-Dependent Partial Differential Equations
参数相关偏微分方程的降阶和低秩方法
- 批准号:
1819115 - 财政年份:2018
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Order preserving operators in problems of optimal control and in the theory of partial differential equations
最优控制问题和偏微分方程理论中的保序算子
- 批准号:
386620124 - 财政年份:2017
- 资助金额:
$ 23.68万 - 项目类别:
Research Grants
A Scalable High-Order Discontinuous Finite Element Framework for Partial Differential Equations: with Application to Geophysical Fluid Flows
偏微分方程的可扩展高阶不连续有限元框架:在地球物理流体流动中的应用
- 批准号:
1620352 - 财政年份:2016
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Multiobjective Optimal Control of Partial Differential Equations Using Reduced-Order Modeling
使用降阶建模的偏微分方程的多目标最优控制
- 批准号:
314151124 - 财政年份:2016
- 资助金额:
$ 23.68万 - 项目类别:
Priority Programmes
Partial Order Colloidal Phases as Photonic Solids
作为光子固体的偏序胶体相
- 批准号:
1508592 - 财政年份:2015
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant