EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks

EAGER:FODAVA:大规模网络中欺诈检测的频谱分析

基本信息

  • 批准号:
    1047621
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

AbstractThis project takes a unified spectral transformation approach to address challenges of analyzing network topology and identifying fraud patterns in large-scale dynamic networks by using data spectral transformation with network topology visualization. Large-scale social and communication networks contain rich topological information embedded inside, in addition to various structured, semi-structured, and unstructured data. There has been little to date work dedicated to exploring network topology, especially from the spectral analysis point of view. If the proposed methods, which are based on the simple adjacency matrix representation of a graph and the node representation based on k communities in the graph, can be demonstrated to work for very large data sets, it will be a significant advance. The research is being integrated with information visualization and visual analytics algorithms and has a testbed of banking data available to allow for a search for fraud. The research is characterizing patterns of various attacks in the spectral projection space and developing spectrum based methods to identify these attacks. The approach, which exploits the spectral space of the underlying interaction structure of the network, is orthogonal to traditional approaches using content profiling. The ability to perform this spectral analysis is dependent upon the development of complex mathematical techniques. Critical issues that are being explored include the scalability of the methods to very large data sets and the determination of the dimensionality of the node representation in spectral space (which depends upon the number of clusters in the graph). Another issue is that each component of the k-dimensional representation of each node is interpreted as the 'likelihood' of a node's attachment to the k communities. However, it must be guaranteed that the components of the k-dimensional vector that represent each node will be all nonnegative or else an interpretation of the negative number as 'likelihood' must be developed that is mathematically consistent. These and other related mathematical issues are being explored.
摘要本项目采用统一的谱变换方法,通过将数据谱变换与网络拓扑可视化相结合来解决大规模动态网络中分析网络拓扑和识别欺诈模式的挑战。除了各种结构化、半结构化和非结构化的数据外,大规模的社交和通信网络中还嵌入了丰富的拓扑信息。到目前为止,致力于探索网络拓扑的工作很少,特别是从频谱分析的角度。如果所提出的基于图的简单邻接矩阵表示和基于图中k个社区的节点表示的方法能够被证明适用于非常大的数据集,这将是一个重大的进步。这项研究正在与信息可视化和视觉分析算法相结合,并有一个银行数据试验台,可以用来搜索欺诈行为。该研究正在谱投影空间中表征各种攻击的模式,并开发基于谱的方法来识别这些攻击。该方法利用了网络底层交互结构的频谱空间,与使用内容分析的传统方法是正交的。进行这种光谱分析的能力取决于复杂数学技术的发展。正在探索的关键问题包括方法对非常大的数据集的可伸缩性以及谱空间中节点表示的维度的确定(这取决于图中的簇的数量)。另一个问题是,每个节点的k维表示的每个分量被解释为节点依附于k个社区的‘可能性’。然而,必须保证表示每个节点的k维向量的分量都是非负的,否则必须开发出在数学上一致的将负数解释为“可能性”的方法。这些和其他相关的数学问题正在探索中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xintao Wu其他文献

Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karuna Bhaila;Minh;Xintao Wu
  • 通讯作者:
    Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
  • DOI:
    10.1039/d0nr02956d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu
  • 通讯作者:
    Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
  • DOI:
    10.1016/j.patcog.2006.05.003
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xintao Wu;Yong Ye
  • 通讯作者:
    Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入

Xintao Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xintao Wu', 18)}}的其他基金

EAGER: Towards Fair Regression under Sample Selection Bias
EAGER:样本选择偏差下的公平回归
  • 批准号:
    2137335
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940093
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
  • 批准号:
    1841119
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention
EAGER:基于因果贝叶斯网络的歧视发现和预防
  • 批准号:
    1646654
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564250
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
  • 批准号:
    1523115
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502273
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
  • 批准号:
    0915059
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
  • 批准号:
    0831204
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
  • 批准号:
    0546027
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

FODAVA II - The Science of Interaction Workshop
FODAVA II - 交互科学研讨会
  • 批准号:
    1144379
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FODAVA: Collaborative Research: Foundations of Comparative Analytics for Uncertainty in Graphs
FODAVA:协作研究:图形不确定性比较分析的基础
  • 批准号:
    0937070
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FODAVA: Bayesian Analysis in Visual Analytics (BAVA)
FODAVA:可视化分析中的贝叶斯分析 (BAVA)
  • 批准号:
    0937071
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FODAVA: Collaborative Research: Foundations of Comparative Analytics for Uncertainty in Graphs
FODAVA:协作研究:图形不确定性比较分析的基础
  • 批准号:
    0937094
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FODAVA: Collaborative Research: Foundations of Comparative Analytics for Uncertainty in Graphs
FODAVA:协作研究:图形不确定性比较分析的基础
  • 批准号:
    0937073
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FODAVA-Partner: Visualizing Audio for Anomaly Detection
FODAVA-合作伙伴:可视化音频以进行异常检测
  • 批准号:
    0807329
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了