EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention

EAGER:基于因果贝叶斯网络的歧视发现和预防

基本信息

  • 批准号:
    1646654
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Various business models have been built around the collection and use of customer data to make important decisions like employment, credit, and insurance. There are increasing worries of discrimination as data analytics technologies could be used to unfairly treat individuals based on their demographic information such as gender, age, marital status, race, religion or belief, membership in a national minority, disability, or illness. It is imperative to develop predictive decision models, such that the data that goes into them and the decisions made with their assistance are not subject to discrimination. This EAGER research designs practical techniques to accurately detect and remove discrimination from the datasets used to build decision models. A primary outcome of this research is a unifying framework and a prototype system for discrimination discovery and removal. This system can help individuals from disadvantaged groups determine whether they are fairly treated and help decision makers from organizations ensure their predictive decision models are discrimination free. Existing discrimination discovery approaches are mainly based on correlation or association and cannot accurately discover the true discrimination. In addition, each of them targets on one or two types of discrimination only. This research categorizes discrimination based on whether discrimination is across the whole system, occurs in one subsystem, or happens to one individual, and whether discrimination is a direct effect or an indirect effect on the decision. This research then develops a unifying causal Bayesian network based framework that takes into consideration the distinctions between discrimination and general causalities and models both direct discrimination and indirect discrimination as causal effects via different paths between protected attributes and the decision. It can accurately capture and measure various types of discrimination at system, group, and individual levels. The research then develops novel discrimination discovery and prevention models and algorithms. The research also builds a testing framework for simulating different types of discrimination and evaluating the approaches based on various metrics, and integrates the discrimination discovery and prevention algorithms into an open source data mining and machine learning software system.
围绕客户数据的收集和使用,已经建立了各种业务模型,以做出就业、信贷和保险等重要决策。由于数据分析技术可能被用来根据个人的人口统计信息(如性别、年龄、婚姻状况、种族、宗教或信仰、少数民族成员、残疾或疾病)不公平地对待个人,因此对歧视的担忧日益增加。必须开发预测性决策模型,使进入模型的数据和在模型的帮助下做出的决定不受歧视。这项EAGER研究设计了实用的技术来准确地检测和消除用于构建决策模型的数据集中的歧视。本研究的主要成果是一个统一的框架和原型系统的歧视发现和消除。该系统可以帮助弱势群体的个人确定他们是否受到公平对待,并帮助组织的决策者确保他们的预测决策模型不受歧视。现有的歧视发现方法主要基于相关性或关联,不能准确发现真正的歧视。此外,每一项都只针对一种或两种歧视。本研究根据歧视是贯穿整个系统,发生在一个子系统,还是发生在一个个体,以及歧视是对决策的直接影响还是间接影响来对歧视进行分类。然后,本研究开发了一个统一的基于因果贝叶斯网络的框架,该框架考虑了歧视和一般因果关系之间的区别,并通过保护属性和决策之间的不同路径将直接歧视和间接歧视作为因果效应建模。它可以准确地捕捉和衡量系统、群体和个人层面的各种歧视。然后,该研究开发了新的歧视发现和预防模型和算法。该研究还构建了一个测试框架,用于模拟不同类型的歧视,并基于各种指标评估方法,并将歧视发现和预防算法集成到开源数据挖掘和机器学习软件系统中。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anti-discrimination learning: a causal modeling-based framework
反歧视学习:基于因果建模的框架
A Generative Adversarial Framework for Bounding Confounded Causal Effects
  • DOI:
    10.1609/aaai.v35i13.17437
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaowei Hu;Yongkai Wu;Lu Zhang;Xintao Wu
  • 通讯作者:
    Yaowei Hu;Yongkai Wu;Lu Zhang;Xintao Wu
A Causal Framework for Discovering and Removing Direct and Indirect Discrimination
发现和消除直接和间接歧视的因果框架
Using Loglinear Model for Discrimination Discovery and Prevention
使用对数线性模型进行歧视发现和预防
Causal Modeling-Based Discrimination Discovery and Removal: Criteria, Bounds, and Algorithms
基于因果模型的歧视发现和消除:标准、界限和算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xintao Wu其他文献

Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karuna Bhaila;Minh;Xintao Wu
  • 通讯作者:
    Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
  • DOI:
    10.1039/d0nr02956d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu
  • 通讯作者:
    Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
  • DOI:
    10.1016/j.patcog.2006.05.003
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xintao Wu;Yong Ye
  • 通讯作者:
    Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入

Xintao Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xintao Wu', 18)}}的其他基金

EAGER: Towards Fair Regression under Sample Selection Bias
EAGER:样本选择偏差下的公平回归
  • 批准号:
    2137335
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940093
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
  • 批准号:
    1841119
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564250
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
  • 批准号:
    1523115
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502273
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks
EAGER:FODAVA:大规模网络中欺诈检测的频谱分析
  • 批准号:
    1047621
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
  • 批准号:
    0915059
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
  • 批准号:
    0831204
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
  • 批准号:
    0546027
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Bayesian causal estimation via model misspecification
通过模型错误指定进行贝叶斯因果估计
  • 批准号:
    EP/Y029755/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Inform Shared Decision-making with Advanced Bayesian Causal Inference to Improve Quality of Pediatric Rheumatology Care
通过高级贝叶斯因果推理为共享决策提供信息,以提高儿科风湿病护理的质量
  • 批准号:
    10646649
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10620291
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Bayesian causal learning: A novel framework for drug-target discovery using Mendelian randomization on single-cell transcriptomics
贝叶斯因果学习:在单细胞转录组学上使用孟德尔随机化的药物靶点发现的新框架
  • 批准号:
    MR/W029790/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Bayesian causal inference for environmental epidemiology data
环境流行病学数据的贝叶斯因果推断
  • 批准号:
    RGPIN-2021-03187
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10445648
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Bayesian Differential Causal Network and Clustering Methods for Single-Cell Data
单细胞数据的贝叶斯差分因果网络和聚类方法
  • 批准号:
    10707494
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了