EAGER: Towards Fair Regression under Sample Selection Bias

EAGER:样本选择偏差下的公平回归

基本信息

  • 批准号:
    2137335
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Decision making models are ubiquitous in applications like employment, credit, and insurance. Increasingly, there are worries of inaccurate decisions or even discrimination from predictive decision models that have been trained on a collection of data. Fair machine learning has been an increasingly important topic. Fair machine learning models aim to learn a function for a target variable while ensuring the predicted value is fair based on a given fairness criterion. Much of the existing work focuses on fair classification. This project researches fair regression where the decision such as loan amount is continuous and focuses on the scenario where the existing data for building the model have different distributions from the model's future data. In particular, this project deals with the sample selection bias where the values for the dependent variable from the training dataset are missing. The project aims to develop a unified framework and practical solutions for achieving rigorous fairness and high accuracy of the built regression model via bias correction and optimization techniques. The technical aims of this project are divided into three thrusts. The first thrust develops the unified framework for fair regression under sample selection bias. The framework adopts the classic Heckman model to correct bias and enforces multiple advanced fairness notions via constrained optimization. The second thrust applies the Lagrange duality theory and develops reduction approaches to solve constrained optimization. Theoretical studies of achieving strong duality for fairness notions and research of deriving approximation techniques for efficient optimization will be conducted in this thrust. The third thrust conducts empirical evaluation of the developed framework and algorithms in terms of prediction accuracy and fairness with benchmark datasets and real applications, implements and integrates the algorithms into open source libraries for fair machine learning. The research findings expect to advance theoretical understanding of fair regression, improve its applicability for handling sample selection bias, and help transition of fair regression algorithms to use in real systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
决策模型在就业、信贷和保险等应用中无处不在。越来越多的人担心决策不准确,甚至是在数据集合上训练的预测决策模型的歧视。公平的机器学习已经成为一个越来越重要的话题。公平机器学习模型旨在学习目标变量的函数,同时确保预测值基于给定的公平标准是公平的。 现有的大部分工作都集中在公平分类上。本项目研究贷款额等决策连续的公平回归,并关注用于构建模型的现有数据与模型的未来数据具有不同分布的情况。 特别是,该项目处理样本选择偏差,其中训练数据集中因变量的值缺失。 该项目旨在开发一个统一的框架和实用的解决方案,通过偏差校正和优化技术实现所建回归模型的严格公平性和高准确性。 该项目的技术目标分为三个方面。第一个推力发展的统一框架下的样本选择偏差的公平回归。该框架采用经典的Heckman模型来纠正偏差,并通过约束优化来实施多种先进的公平性概念。第二个推力应用拉格朗日对偶理论和发展减少的方法来解决约束优化。实现强对偶的公平性概念的理论研究和推导出有效的优化近似技术的研究将在这一推力进行。第三个重点是利用基准数据集和真实的应用程序对所开发的框架和算法在预测准确性和公平性方面进行实证评估,实现并将算法集成到开源库中以实现公平的机器学习。 该研究成果有望推进对公平回归的理论理解,提高其处理样本选择偏差的适用性,并帮助公平回归算法过渡到真实的system.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fair and Robust Classification Under Sample Selection Bias
样本选择偏差下的公平稳健分类
Robust Personalized Federated Learning under Demographic Fairness Heterogeneity
Adaptive Fairness-Aware Online Meta-Learning for Changing Environments
The statistical fairness field guide: perspectives from social and formal sciences
  • DOI:
    10.1007/s43681-022-00183-3
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alycia N. Carey;Xintao Wu
  • 通讯作者:
    Alycia N. Carey;Xintao Wu
Fair Regression under Sample Selection Bias
样本选择偏差下的公平回归
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xintao Wu其他文献

Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karuna Bhaila;Minh;Xintao Wu
  • 通讯作者:
    Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
  • DOI:
    10.1039/d0nr02956d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu
  • 通讯作者:
    Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
  • DOI:
    10.1016/j.patcog.2006.05.003
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xintao Wu;Yong Ye
  • 通讯作者:
    Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入

Xintao Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xintao Wu', 18)}}的其他基金

Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940093
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
  • 批准号:
    1841119
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention
EAGER:基于因果贝叶斯网络的歧视发现和预防
  • 批准号:
    1646654
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564250
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
  • 批准号:
    1523115
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502273
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks
EAGER:FODAVA:大规模网络中欺诈检测的频谱分析
  • 批准号:
    1047621
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
  • 批准号:
    0915059
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
  • 批准号:
    0831204
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
  • 批准号:
    0546027
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了