Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
基本信息
- 批准号:1940093
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project to study what works to help students learn more effectively in the context of the ASSISTments system. ASSISTments is an online system that provides both assistance to students and real time assessment data to teachers. ASSISTments now supports 100,000 students who have completed more than 12 million mathematics problems. The system uses teacher input and artificial intelligence to provide assistance to students who are attempting to solve mathematics problems. This project will increase the assistance provided by the teacher and machine learning by incorporating video suggestions, such as those produced by the Kahn academy, targeted to the needs of the student. The experimentation will take content from three Open Educational Resource textbooks that are openly licensed and free to schools.More specifically, the researchers will identify a large collection of videos that address mathematics skills in the textbooks and will extract features of these videos including language complexity, speaking rate, and other features. These videos and features will be checked by both teachers and through a Mechanical Turk process for usability before they are presented to students. Additionally, the project will develop a suite of novel technologies for precision learning including fine grained video feature extraction, student feature learning from heterogeneous raw data, causal modeling, and fairness aware and causal relationship enhanced optimized personalized recommendation. The research will advance theoretical understanding of fundamental issues related to personalized learning and will enable data-driven experimentation of learning theories. Causal modeling will enable the researchers to learn the features of video that are correlated with learning effectiveness. This project is part of the National Science Foundation's Harnessing the Data Revolution Big Idea activity and is co-funded by the Division of Undergraduate Education and the Division of Research on Learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个项目,研究什么工作,以帮助学生更有效地学习的背景下,ASSISTments系统。ASSISTments是一个在线系统,既为学生提供帮助,又为教师提供真实的实时评估数据。ASSISTments现在支持10万名学生,他们已经完成了1200多万个数学问题。该系统使用教师输入和人工智能为试图解决数学问题的学生提供帮助。该项目将增加教师和机器学习提供的帮助,通过结合视频建议,例如Kahn学院针对学生需求制作的视频建议。该实验将从三本开放教育资源教科书中选取内容,这些教科书是公开授权的,对学校免费。更具体地说,研究人员将识别大量教科书中涉及数学技能的视频,并提取这些视频的特征,包括语言复杂度、语速和其他特征。这些视频和功能将由两位教师进行检查,并通过Mechanical Turk流程进行可用性检查,然后再向学生展示。此外,该项目还将开发一套用于精确学习的新技术,包括细粒度视频特征提取、从异构原始数据中学习学生特征、因果建模以及公平感知和因果关系增强的优化个性化推荐。该研究将推进对个性化学习相关基本问题的理论理解,并将使学习理论的数据驱动实验成为可能。因果建模将使研究人员能够学习与学习效率相关的视频特征。该项目是美国国家科学基金会利用数据革命大创意活动的一部分,由本科教育部和学习研究部共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing personalized modeling via weighted and adversarial learning
- DOI:10.1007/s41060-021-00263-3
- 发表时间:2021-05
- 期刊:
- 影响因子:2.4
- 作者:Wei Du;Xintao Wu
- 通讯作者:Wei Du;Xintao Wu
Achieving User-Side Fairness in Contextual Bandits
在上下文强盗中实现用户端公平
- DOI:10.1007/s44230-022-00008-w
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Huang, Wen;Labille, Kevin;Wu, Xintao;Lee, Dongwon;Heffernan, Neil
- 通讯作者:Heffernan, Neil
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness
PC-Fairness:衡量基于因果关系的公平性的统一框架
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wu, Yongkai;Zhang, Lu;Wu, Xintao;Tong, Hanghang
- 通讯作者:Tong, Hanghang
Transferable Contextual Bandits with Prior Observations
具有先前观察的可转移上下文强盗
- DOI:10.1007/978-3-030-75765-6_32
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Labille, Kevin;Huang, Wen;Wu, Xintao
- 通讯作者:Wu, Xintao
Achieving Counterfactual Fairness for Causal Bandit
实现因果强盗的反事实公平
- DOI:10.1609/aaai.v36i6.20653
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Huang, Wen;Zhang, Lu;Wu, Xintao
- 通讯作者:Wu, Xintao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xintao Wu其他文献
Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karuna Bhaila;Minh;Xintao Wu - 通讯作者:
Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
- DOI:
10.1039/a700681k - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Biao Wu;Wenjian Zhang;Shu‐Yan Yu;Xintao Wu - 通讯作者:
Xintao Wu
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
- DOI:
10.1039/d0nr02956d - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu - 通讯作者:
Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
- DOI:
10.1016/j.patcog.2006.05.003 - 发表时间:
2006 - 期刊:
- 影响因子:8
- 作者:
Xintao Wu;Yong Ye - 通讯作者:
Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入
- DOI:
10.1109/ase.2011.6100152 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kai Pan;Xintao Wu;Tao Xie - 通讯作者:
Tao Xie
Xintao Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xintao Wu', 18)}}的其他基金
EAGER: Towards Fair Regression under Sample Selection Bias
EAGER:样本选择偏差下的公平回归
- 批准号:
2137335 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
- 批准号:
1841119 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention
EAGER:基于因果贝叶斯网络的歧视发现和预防
- 批准号:
1646654 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
- 批准号:
1564250 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523115 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
- 批准号:
1502273 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks
EAGER:FODAVA:大规模网络中欺诈检测的频谱分析
- 批准号:
1047621 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
- 批准号:
0915059 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
- 批准号:
0831204 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
- 批准号:
0546027 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: A generalizable data framework towards Precision Radiotherapy.
协作研究:精准放射治疗的通用数据框架。
- 批准号:
2313443 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Development of a precision closed loop BCI for socially fearful teens with depression and anxiety
合作研究:为患有抑郁症和焦虑症的社交恐惧青少年开发精确闭环脑机接口
- 批准号:
2327066 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
- 批准号:
2307116 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Development of a precision closed loop BCI for socially fearful teens with depression and anxiety
合作研究:为患有抑郁症和焦虑症的社交恐惧青少年开发精确闭环脑机接口
- 批准号:
2327065 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318707 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
- 批准号:
2307117 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231706 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231707 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318708 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant