CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
基本信息
- 批准号:0546027
- 负责人:
- 金额:$ 35.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IIS-0546027Xintao Wu xwu@uncc.eduUniversity of North Carolina at CharlotteCAREER: Towards Privacy and Confidentiality Preserving DatabasesMany databases from government, commercial and non-profit organizations maintain a huge amount of data on sensitive or confidential information such as income and medical records. As a result, protecting the privacy and confidentiality of such databases is of primary concern. Data perturbation approach is often adopted when database owners export or publish their sensitive or confidential data. However, it is very hard to quantify and evaluate the tradeoffs between the data utility and the disclosure risk in practice since the data space which is used for disclosure analysis is almost infinite. This project develops a novel model-based disclosure analysis approach which builds statistical models first and analyzes potential disclosure at the models' parameter level. Since the search space of parameters is much smaller than that of data and all information which attackers can derive is contained in those parameters, this approach is more effective and efficient. This project also conducts the theoretical study of perturbation based approach by developing the explicit form between construction accuracy and noise added for various reconstruction methods since previous research only conducted empirical evaluations. The results of this project will provide a prototype system which can fully conduct disclosure analysis using both model based and randomization based approaches to satisfy users' complex privacy and confidentiality specifications. The system aims to be used by local industry partners and other organizations. Education impacts of this project will include involvement of graduate and undergraduate students and incorporation of research projects into courses related to database security and privacy. Two Ph.D. graduate students will be produced to enhance the nation's capability in information security. All results including publications, empirical studies and software will be disseminated via the project web site (http://www.cs.uncc.edu/~xwu/career).
is - 0546027xintao Wu xwu@uncc.eduUniversity, North Carolina at charlottec职业:迈向隐私和保密保护数据库许多来自政府、商业和非营利组织的数据库维护着大量敏感或机密信息的数据,如收入和医疗记录。因此,保护这类数据库的隐私和机密性是首要问题。当数据库所有者导出或发布其敏感或机密数据时,通常采用数据扰动方法。然而,在实践中,由于用于披露分析的数据空间几乎是无限的,因此很难量化和评估数据效用与披露风险之间的权衡。本项目开发了一种新颖的基于模型的披露分析方法,该方法首先建立统计模型,并在模型的参数水平上分析潜在的披露。由于参数的搜索空间比数据的搜索空间小得多,并且攻击者可以获得的所有信息都包含在这些参数中,因此该方法更加有效和高效。本项目还对基于摄动的方法进行了理论研究,针对以往的研究仅进行了经验评价,建立了各种重建方法的施工精度与添加噪声之间的显式形式。该项目的成果将提供一个原型系统,该系统可以使用基于模型和基于随机化的方法充分进行披露分析,以满足用户复杂的隐私和保密规范。该系统旨在为当地工业伙伴和其他组织使用。该项目的教育影响将包括研究生和本科生的参与,并将研究项目纳入与数据库安全和隐私相关的课程。为提高国家信息安全能力,将培养2名博士研究生。所有结果,包括出版物、实证研究和软件将通过项目网站(http://www.cs.uncc.edu/~xwu/career)传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xintao Wu其他文献
Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karuna Bhaila;Minh;Xintao Wu - 通讯作者:
Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
- DOI:
10.1039/a700681k - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Biao Wu;Wenjian Zhang;Shu‐Yan Yu;Xintao Wu - 通讯作者:
Xintao Wu
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
- DOI:
10.1039/d0nr02956d - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu - 通讯作者:
Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
- DOI:
10.1016/j.patcog.2006.05.003 - 发表时间:
2006 - 期刊:
- 影响因子:8
- 作者:
Xintao Wu;Yong Ye - 通讯作者:
Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入
- DOI:
10.1109/ase.2011.6100152 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kai Pan;Xintao Wu;Tao Xie - 通讯作者:
Tao Xie
Xintao Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xintao Wu', 18)}}的其他基金
EAGER: Towards Fair Regression under Sample Selection Bias
EAGER:样本选择偏差下的公平回归
- 批准号:
2137335 - 财政年份:2021
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940093 - 财政年份:2019
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
- 批准号:
1841119 - 财政年份:2018
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention
EAGER:基于因果贝叶斯网络的歧视发现和预防
- 批准号:
1646654 - 财政年份:2016
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
- 批准号:
1564250 - 财政年份:2016
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523115 - 财政年份:2015
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
- 批准号:
1502273 - 财政年份:2015
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks
EAGER:FODAVA:大规模网络中欺诈检测的频谱分析
- 批准号:
1047621 - 财政年份:2010
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
- 批准号:
0915059 - 财政年份:2009
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
- 批准号:
0831204 - 财政年份:2008
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318844 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
CAREER: SaTC: Towards Machine-learnable Enhancing Framework for Local Differential Privacy
职业:SaTC:面向本地差异隐私的机器学习增强框架
- 批准号:
2238680 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
2344925 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Towards full lifecycle privacy protection on cloud
实现云端全生命周期隐私保护
- 批准号:
LP190100395 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Linkage Projects
CRII: SaTC: Towards Secure and Privacy-preserving Input on Augmented Reality Systems
CRII:SaTC:增强现实系统的安全和隐私保护输入
- 批准号:
2153397 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Towards Privacy Preserving Internet of Things
迈向保护物联网隐私
- 批准号:
RGPIN-2019-05434 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Federated Learning over 5G Mobile Devices: High Efficiency, Low Latency, and Good Privacy
协作研究:CNS 核心:中:迈向 5G 移动设备上的联邦学习:高效率、低延迟和良好的隐私性
- 批准号:
2106589 - 财政年份:2021
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant