EAGER: Constraint Aware Generative Adversarial Networks
EAGER:约束感知生成对抗网络
基本信息
- 批准号:1841119
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Generative adversarial networks (GAN), which estimate the real data distribution through an adversarial game, have achieved great success in image generation and text generation. However, many decision models from real world applications are trained on relational data that contains both numerical and categorical attributes. Furthermore, real world applications often have legal or ethical requirements on the generated data, e.g., discrimination free or privacy preservation, or expect to generate complementary samples to their existing data that may only contain normal samples. The research significantly improves the applicability of generative adversarial networks from image/text data to relational data with application requirements and contributes to the limited base of knowledge in the area of using generative adversarial networks for constraint aware relational data generation. The findings, tools, software code, and curricular materials documents are disseminated to the research community, IT industry, and users, which expects to help domain users generate constraint aware data to meet their business needs. This EAGER research develops novel techniques that enable the current generative adversarial networks to generate realistic relational data with constraints. The developed framework adds a decoder to the generator to generate both numerical and categorical data and incorporates constraint terms into the objective functions of generator and discriminator or introduces multiple discriminators to enforce requirement constraints. The research adopts f-divergences to analyze the convergence of the constraint aware GAN framework when complex constraints are introduced. The research then focuses on developing under the unifying framework two specific models, fair GAN for generating discrimination-free data, and complementary GAN for generating negative samples when only positive samples are available in the training data. The research conducts empirical evaluations of the framework and two specific models in terms of accuracy and convergence, implements and integrates the developed algorithms into TensorFlow, an open source deep learning software system. The developed framework expects to advance theoretical understanding of generative adversarial networks and the two specific GAN models expect to improve the current research on fairness aware learning and fraud detection. In particular, the fair GAN introduces the new approach of fair data generation based on GAN as current fairness aware learning research mainly adopts data modification. The complimentary GAN outperforms existing one-class classification models for fraud detection by generating complementary samples and enabling the trained discriminator to accurately separate abnormal samples from normal ones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成式对抗网络(GAN)通过对抗博弈来估计真实数据的分布,在图像生成和文本生成方面取得了巨大的成功。然而,来自现实世界应用程序的许多决策模型是在包含数值和分类属性的关系数据上训练的。此外,现实世界的应用通常对生成的数据有法律或道德要求,例如,无歧视或隐私保护,或者期望生成可能只包含正常样本的现有数据的补充样本。该研究显著提高了生成对抗网络从图像/文本数据到具有应用需求的关系数据的适用性,并有助于利用生成对抗网络进行约束感知关系数据生成领域的有限知识基础。这些发现、工具、软件代码和课程材料文档被分发给研究社区、IT行业和用户,它们希望帮助领域用户生成约束感知数据,以满足他们的业务需求。这项EAGER研究开发了新的技术,使当前的生成对抗网络能够生成具有约束的现实关系数据。所开发的框架在生成器上增加了一个解码器来生成数值和分类数据,并在生成器和鉴别器的目标函数中加入约束项或引入多个鉴别器来强制执行需求约束。本研究采用f-散度分析了当引入复杂约束时约束感知GAN框架的收敛性。然后,研究重点是在统一的框架下开发两种特定的模型,即用于生成无歧视数据的公平GAN和用于在训练数据中只有正样本时生成负样本的互补GAN。本研究从准确性和收敛性两个方面对框架和两个具体模型进行了实证评估,并将所开发的算法实现并集成到开源深度学习软件系统TensorFlow中。开发的框架有望推进对生成对抗网络的理论理解,两种特定的GAN模型有望改进当前在公平感知学习和欺诈检测方面的研究。特别是,公平GAN引入了基于GAN的公平数据生成的新方法,目前的公平感知学习研究主要采用数据修改。互补GAN通过生成互补样本,并使训练的鉴别器能够准确地将异常样本与正常样本分开,从而优于现有的单类欺诈检测分类模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-Class Adversarial Nets for Fraud Detection
- DOI:10.1609/aaai.v33i01.33011286
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Panpan Zheng;Shuhan Yuan;Xintao Wu;Jun Yu Li;Aidong Lu
- 通讯作者:Panpan Zheng;Shuhan Yuan;Xintao Wu;Jun Yu Li;Aidong Lu
Achieving Causal Fairness through Generative Adversarial Networks
通过生成对抗网络实现因果公平
- DOI:10.24963/ijcai.2019/201
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Xu, Depeng;Wu, Yongkai;Yuan, Shuhan;Zhang, Lu;Wu, Xintao
- 通讯作者:Wu, Xintao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xintao Wu其他文献
Soft Prompting for Unlearning in Large Language Models
大型语言模型中遗忘的软提示
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karuna Bhaila;Minh;Xintao Wu - 通讯作者:
Xintao Wu
Synthesis and structure of a helical polymer[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane}
螺旋聚合物[Ag(R,R-DIOP)(NO3)]n{DIOP = (4R,5R)-trans-4,5-双[(二苯基膦)甲基]-2,2-二甲基-的合成与结构
- DOI:
10.1039/a700681k - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Biao Wu;Wenjian Zhang;Shu‐Yan Yu;Xintao Wu - 通讯作者:
Xintao Wu
Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets
协调剪裁不溶于水的 3D MOF 来制造超薄 2D MOF 纳米片
- DOI:
10.1039/d0nr02956d - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Yuehong Wen;Qiang Liu;Shaodong Su;Yuying Yang;Xiaofang Li;Qi-Long Zhu;Xintao Wu - 通讯作者:
Xintao Wu
Exploring gene causal interactions using an enhanced constraint-based method
使用增强的基于约束的方法探索基因因果相互作用
- DOI:
10.1016/j.patcog.2006.05.003 - 发表时间:
2006 - 期刊:
- 影响因子:8
- 作者:
Xintao Wu;Yong Ye - 通讯作者:
Yong Ye
Generating program inputs for database application testing
生成用于数据库应用程序测试的程序输入
- DOI:
10.1109/ase.2011.6100152 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kai Pan;Xintao Wu;Tao Xie - 通讯作者:
Tao Xie
Xintao Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xintao Wu', 18)}}的其他基金
EAGER: Towards Fair Regression under Sample Selection Bias
EAGER:样本选择偏差下的公平回归
- 批准号:
2137335 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940093 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: Causal Bayesian Network-Based Discrimination Discovery and Prevention
EAGER:基于因果贝叶斯网络的歧视发现和预防
- 批准号:
1646654 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
- 批准号:
1564250 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523115 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
- 批准号:
1502273 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: FODAVA: Spectral Analysis for Fraud Detection in Large-scale Networks
EAGER:FODAVA:大规模网络中欺诈检测的频谱分析
- 批准号:
1047621 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Constraint-Based Generation of Database States for Testing Database Applications
SHF:小型:协作研究:基于约束的数据库状态生成,用于测试数据库应用程序
- 批准号:
0915059 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CT-ER: Privacy and Spectral Analysis in Social Network Randomization
CT-ER:社交网络随机化中的隐私和频谱分析
- 批准号:
0831204 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Towards Privacy and Confidentiality Preserving Databases
职业:致力于保护数据库的隐私和机密
- 批准号:
0546027 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
- 批准号:
EP/X033201/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
- 批准号:
2342192 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
- 批准号:
2307801 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: NeuralSAT: A Constraint-Solving Framework for Verifying Deep Neural Networks
职业:NeuralSAT:用于验证深度神经网络的约束求解框架
- 批准号:
2238133 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Illuminating the distribution of extreme evolutionary constraint in the human genome from fetal demise to severe developmental disorders
阐明人类基因组中从胎儿死亡到严重发育障碍的极端进化限制的分布
- 批准号:
10601318 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Evaluating the relative contribution of historical constraint in the evolution of migratory routes of Japanese birds
评估历史约束对日本鸟类迁徙路线演变的相对贡献
- 批准号:
23K14272 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterization and clinical trial of a Variable Friction Shoe, a new paradigm of reduced-constraint locomotor therapy for people exhibiting foot drop due to stroke
可变摩擦鞋的表征和临床试验,这是一种针对因中风而出现足下垂的患者的减少约束运动疗法的新范例
- 批准号:
10720578 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: