IDBR: Development and Dissemination of a Flexible Multifunctional Widefield 3D Superresolution Microscopy System for Quantitative Biological Research

IDBR:用于定量生物学研究的灵活多功能宽场 3D 超分辨率显微镜系统的开发和传播

基本信息

  • 批准号:
    1063407
  • 负责人:
  • 金额:
    $ 35.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-15 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

AbstractThis bridging proposal addresses a major opportunity in biological research to provide multifunctional 3D superresolution imaging capability to thousands of biology laboratories in the US and around the globe. The objective of this project is to develop, to the point of commercial production, a ground-breaking multifunctional microscopy system with single-molecule sensitivity suitable for live cell studies. The system overcomes current fundamental limitations by providing wide-field three-dimensional (3D) super-resolution imaging with single molecule sensitivity. These capabilities are achieved using minimally invasive fluorescence techniques.Intellectual merit--A variety of methods for super-resolution optical microscopy are now making it possible to resolve objects that are smaller than the optical diffraction limit, which has historically restricted spatial resolution to about 200nm in the transverse dimension and about 500 nm in the axial dimension. Although these techniques have demonstrated the feasibility of optical imaging beyond the diffraction limit, they are far from mature and new developments are required to reach the new limits on a regular basis at the typical biology lab.Accordingly, this project focuses on fundamental developments to address the need for widespread single-molecule imaging instrumentation. The instrument is based on an integrated design of the illumination, the fluorescent molecules, the 3D optical response, the data collection strategy, and the postprocessing / reconstruction algorithms.The proposed design of a wide-field microscope presents a double-helix point spread function that features two dominant lobes in the image plane whose angular orientation rotates with the axial (z) position of the emitter. By encoding the z-position in the angular orientation of the two lobes, the 3D position of each emitter can be determined well beyond the optical diffraction limit. Moreover, the technique enables 3D imaging with greater depth of field than is available from other imaging methods. The system consistently attains 3D sectioning capability with isotropic resolutions below 20nm over an extended depth of field of several microns, representing one order of magnitude improvement over available optical microscopes at most research institutions.A well thought-out dissemination plan provides a path from prototype development through large scale production. The main development tasks in this project are: (a) Bringing to maturity a scalable fabrication process for efficient double-helix phase masks. (b) Advancing the implementation of reconstruction algorithms for real-time operation and ease of use by biologists. (c) Implementing a flexible modular structure that can be integrated with new or existing microscopes. (d) Testing the instrument in significant biological problems and independent biology labs.Broader Impact - The widespread availability of 3D superresolution imaging will impact multiple fields of science and engineering including 3D biophysical and biomedical imaging of labeled biomolecules inside and outside of cells. The techniques will find use in tracking orientation changes of molecules within a cellular structure, as well as in monitoring interactions between molecules.The project integrates education and outreach with research and development to create the human infrastructure required for developing future biological instrumentation technologies. It will provide training to a diverse group of young scientists and engineers. Through interaction with a local IGERT program in computational optical sensing and imaging, this project will provide opportunities for interdisciplinary student rotations. The project will also generate synergistic relationships with industry to transfer new discoveries into industrial applications. The results of the investigation will be broadly disseminated including an outreach traveling exhibit on microscopy with interactive demonstrations.
摘要:这个桥接提案解决了生物研究中的一个重大机遇,为美国和全球数千个生物实验室提供多功能 3D 超分辨率成像能力。该项目的目标是开发一种具有单分子敏感性、适合活细胞研究的突破性多功能显微镜系统,以实现商业化生产。该系统通过提供具有单分子灵敏度的宽视场三维 (3D) 超分辨率成像,克服了当前的基本限制。这些功能是通过微创荧光技术实现的。 智力价值——各种超分辨率光学显微镜方法现在可以解析小于光学衍射极限的物体,光学衍射极限历来将空间分辨率限制在横向尺寸约 200 nm 和轴向尺寸约 500 nm。尽管这些技术已经证明了超越衍射极限的光学成像的可行性,但它们还远未成熟,需要新的开发才能在典型的生物实验室定期达到新的极限。因此,该项目侧重于基础开发,以满足广泛的单分子成像仪器的需求。该仪器基于照明、荧光分子、3D 光学响应、数据收集策略和后处理/重建算法的集成设计。所提出的宽视场显微镜设计提出了双螺旋点扩散函数,该函数在图像平面中具有两个主瓣,其角方向随发射器的轴向 (z) 位置旋转。通过对两个波瓣的角方向上的 z 位置进行编码,可以确定每个发射器的 3D 位置,远远超出光学衍射极限。此外,与其他成像方法相比,该技术能够实现具有更大景深的 3D 成像。该系统始终能够在几微米的扩展景深内实现 3D 切片能力,各向同性分辨率低于 20 纳米,这比大多数研究机构现有的光学显微镜提高了一个数量级。经过深思熟虑的推广计划提供了从原型开发到大规模生产的途径。该项目的主要开发任务是: (a) 使高效双螺旋相位掩模的可扩展制造工艺趋于成熟。 (b) 推进重建算法的实施,以实现实时操作并易于生物学家使用。 (c) 实施灵活的模块化结构,可以与新的或现有的显微镜集成。 (d) 在重大生物问题和独立生物实验室中测试仪器。更广泛的影响 - 3D 超分辨率成像的广泛应用将影响科学和工程的多个领域,包括细胞内外标记生物分子的 3D 生物物理和生物医学成像。这些技术将用于跟踪细胞结构内分子的方向变化,以及监测分子之间的相互作用。该项目将教育和推广与研究和开发相结合,以创建开发未来生物仪器技术所需的人类基础设施。它将为多元化的年轻科学家和工程师群体提供培训。通过与当地 IGERT 计算光学传感和成像项目的互动,该项目将为跨学科学生轮换提供机会。该项目还将与工业界建立协同关系,将新发现转化为工业应用。调查结果将广泛传播,包括举办带有互动演示的显微镜外展巡回展览。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafael Piestun其他文献

Free-form micro-optical elements heat up
自由形式微光学元件升温
  • DOI:
    10.1038/s41566-019-0515-2
  • 发表时间:
    2019-08-23
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Rafael Piestun
  • 通讯作者:
    Rafael Piestun

Rafael Piestun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafael Piestun', 18)}}的其他基金

IDBR Type B: Point-spread function engineered parallel scanning optical subsystem for fast quantitative high-resolution and high-sensitivity 3D imaging
IDBR B 型:点扩散函数设计的并行扫描光学子系统,用于快速定量高分辨率和高灵敏度 3D 成像
  • 批准号:
    1556473
  • 财政年份:
    2016
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Continuing Grant
Non-invasive, high-resolution, 3D imaging and sensing through highly scattering materials
通过高散射材料进行非侵入式高分辨率 3D 成像和传感
  • 批准号:
    1611513
  • 财政年份:
    2016
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
MRI: Development of an Advanced Bio-Imaging Instrument: Enabling 3D quantitative multifunctional sensing at the nanoscale
MRI:先进生物成像仪器的开发:实现纳米级 3D 定量多功能传感
  • 批准号:
    1429782
  • 财政年份:
    2014
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
A new paradigm in optical design: infinitely linear refraction artificial materials
光学设计的新范式:无限线性折射人造材料
  • 批准号:
    1310487
  • 财政年份:
    2013
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
Aperiodic Volume Optics
非周期体光学
  • 批准号:
    1028714
  • 财政年份:
    2010
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimode Adaptive 3D Microscopy for Quantitative Analysis of Live-Cellular Dynamic Processes in Thick Samples
合作研究:用于厚样品中活细胞动态过程定量分析的多模式自适应 3D 显微镜
  • 批准号:
    0852885
  • 财政年份:
    2009
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
IGERT: Interdisciplinary Graduate Education in Computational Optical Sensing and Imaging
IGERT:计算光学传感和成像的跨学科研究生教育
  • 批准号:
    0801680
  • 财政年份:
    2008
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Continuing Grant
NIRT: Three-Dimensional Nanomanufacturing Processes for Nanophotonic Devices and Systems
NIRT:纳米光子器件和系统的三维纳米制造工艺
  • 批准号:
    0304650
  • 财政年份:
    2003
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Standard Grant
Integrated Sensing: High-speed 3D Microscopy by Hybrid Optical-Digital Encoding and Processing
集成传感:通过混合光学数字编码和处理实现高速 3D 显微镜
  • 批准号:
    0225533
  • 财政年份:
    2002
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of novel therapy targeting microRNA for peritoneal dissemination and elucidation of its immunological mechanism
开发针对腹膜传播的 microRNA 的新疗法并阐明其免疫机制
  • 批准号:
    23H02985
  • 财政年份:
    2023
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The development of hypoosmotic therapy targeting volume-activated anion channels for peritoneal dissemination of colorectal cancer.
针对结直肠癌腹膜播散的容量激活阴离子通道的低渗疗法的发展。
  • 批准号:
    23K08115
  • 财政年份:
    2023
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a comprehensive training course program for the dissemination of standardized cleft palate speech assessment tool
制定推广标准化腭裂言语评估工具的综合培训课程计划
  • 批准号:
    23K10427
  • 财政年份:
    2023
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of therapy of peritoneal dissemination using novel nucleic acid drugs and extracellular vesicles
利用新型核酸药物和细胞外囊泡开发腹膜播散疗法
  • 批准号:
    23K06772
  • 财政年份:
    2023
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing dissemination and career development in sex and gender translational science in alcohol use
加强酒精使用中性和性别转化科学的传播和职业发展
  • 批准号:
    10821828
  • 财政年份:
    2023
  • 资助金额:
    $ 35.67万
  • 项目类别:
Development and Dissemination of a Functional Electrical Stimulation Toolkit for Rehabilitation Professionals
为康复专业人员开发和传播功能性电刺激工具包
  • 批准号:
    468044
  • 财政年份:
    2022
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Miscellaneous Programs
Development, empirical research and dissemination of new theories and system techniques for the circular economy to fulfill the responsibility for production and consumption of SDGs
开发、实证研究和传播循环经济新理论和系统技术,履行可持续发展目标的生产和消费责任
  • 批准号:
    22H01717
  • 财政年份:
    2022
  • 资助金额:
    $ 35.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Designing with dissemination in mind: Development and evaluation of a theory-based physical activity intervention using the Multiphase Optimization Strategy
设计时考虑到传播:使用多阶段优化策略开发和评估基于理论的身体活动干预措施
  • 批准号:
    10351119
  • 财政年份:
    2022
  • 资助金额:
    $ 35.67万
  • 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
  • 批准号:
    10391136
  • 财政年份:
    2022
  • 资助金额:
    $ 35.67万
  • 项目类别:
Designing with dissemination in mind: Development and evaluation of a theory-based physical activity intervention using the Multiphase Optimization Strategy
设计时考虑到传播:使用多阶段优化策略开发和评估基于理论的身体活动干预措施
  • 批准号:
    10602512
  • 财政年份:
    2022
  • 资助金额:
    $ 35.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了