OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material

OP:单层材料中具有单发射极的电控固态腔 QED

基本信息

  • 批准号:
    1708579
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

We live in the midst of an information technology revolution. In the last few decades, with the aggressive scaling of electronic devices, we have realized unprecedented performance in computing and communication. However, this rapid scaling, commonly known as "Moore's Law" is slowing and it is well-understood that next-generation computing technology will rely heavily on data centers and cloud computing. We are already experiencing this trend with the increased investment from large technology companies in these sectors. To support this architecture, however, we need to bring optical interconnect technology, which is the backbone of the modern internet, to shorter length scales. These optical devices need to operate at extremely low power. Going beyond traditional computing and communication, quantum technology presents a paradigm shift in the way we think about information technology. Extremely low-power optical devices can also provide solutions for these quantum technologies. In our research, we will develop photonic integrated circuits, similar to electronic integrated circuits, integrated with single atom thick 2D materials to create these low-power optical devices. Specifically, we will be using atomic defects in 2D materials to push the energy to the single photon level, which is the lowest conceivable energy in photonics, and almost a million times smaller compared to energy consumption in existing optical devices. Our work will bring the innovations in atomic physics to chip-scale technology, and with 2D materials, it is possible to develop these low power devices in a silicon platform exploiting the same fabrication technology which is used to manufacture today's computers and smart phones.Classical and quantum signal processing using light has been a long-standing goal for scientists and engineers. Recent progress in micro- and nano-scale optical devices has renewed interest in this subject, as it can allow pushing energy consumption to regimes that have not been attainable in bulk optical systems. Specifically, by exploiting nanoscale optical cavities and single quantum emitters, the potential exists for building photonic devices based on principles of quantum electrodynamics. However, in all the existing cavity quantum electrodynamic devices, the single emitters are embedded in a 3D-substrate, rendering external control and facial integration with existing electronic and photonic platforms difficult. These limitations can be circumvented by using a quantum emitter in a 2D substrate, such as single emitters in monolayer materials like transition metal dichalcogenides. The unprecedented material compatibility of monolayer materials will also allow building these quantum optical devices using scalable CMOS technologies. The current proposal aims to research and develop a solid-state cavity quantum electrodynamic platform with single quantum emitters embedded in monolayer materials coupled to integrated solid-state nano-scale cavities. Combining numerical simulation, device fabrication, and optical characterization, the research thrusts include: (i) measure Purcell enhancement with a tunable 2D emitter-cavity system; (ii) demonstrate cavity-enhanced light emitting diodes and (iii) observe strong coupling cavity quantum electrodynamic effects. The ultimate goal is to demonstrate electronically tunable strongly coupled emitter-cavity system, where electro-optic and all-optical switching can be performed at a single photon energy level, and non-classical light can be generated exploiting strong correlation between photons.
我们生活在一场信息技术革命之中。在过去的几十年里,随着电子设备的不断扩展,我们在计算和通信方面实现了前所未有的性能。然而,这种通常被称为“摩尔定律”的快速扩展正在放缓,并且众所周知,下一代计算技术将严重依赖数据中心和云计算。随着大型科技公司在这些领域的投资增加,我们已经经历了这一趋势。然而,为了支持这种架构,我们需要将作为现代互联网支柱的光互连技术引入更短的长度尺度。这些光学器件需要在极低的功率下工作。超越传统的计算和通信,量子技术为我们思考信息技术的方式带来了范式转变。极低功率的光学器件也可以为这些量子技术提供解决方案。在我们的研究中,我们将开发光子集成电路,类似于电子集成电路,与单原子厚的2D材料集成,以创建这些低功耗光学器件。具体来说,我们将利用2D材料中的原子缺陷将能量推到单光子水平,这是光子学中可想象的最低能量,与现有光学设备的能耗相比,几乎小了一百万倍。我们的工作将把原子物理学的创新带到芯片级技术中,利用2D材料,可以在硅平台上开发这些低功耗器件,利用与制造当今计算机和智能手机相同的制造技术。利用光进行经典和量子信号处理一直是科学家和工程师的长期目标。最近在微米和纳米级光学器件方面的进展重新引起了人们对这一主题的兴趣,因为它可以将能量消耗推到在体光学系统中无法实现的状态。具体而言,通过利用纳米级光学腔和单量子发射器,存在基于量子电动力学原理构建光子器件的潜力。然而,在所有现有的腔量子电动力学器件中,单个发射器嵌入在3D衬底中,使得外部控制和与现有电子和光子平台的面集成变得困难。这些限制可以通过在2D衬底中使用量子发射器来规避,例如在单层材料中的单个发射器,如过渡金属二硫属化物。单层材料前所未有的材料兼容性也将允许使用可扩展的CMOS技术构建这些量子光学器件。目前的提案旨在研究和开发一种固态腔量子电动力学平台,该平台具有嵌入单层材料中的单量子发射器,耦合到集成的固态纳米级腔。结合数值模拟,器件制造和光学特性,研究重点包括:(i)测量珀塞尔增强与可调二维发射极腔系统;(ii)演示腔增强发光二极管和(iii)观察强耦合腔量子电动力学效应。最终的目标是展示电子可调谐强耦合发射腔系统,其中电光和全光开关可以在一个单光子的能量水平上进行,并可以利用光子之间的强相关性产生非经典光。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics
  • DOI:
    10.1021/acsphotonics.8b00036
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Fryett, Taylor K.;Chen, Yueyang;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Black Phosphorus Mid-Infrared Light-Emitting Diodes Integrated with Silicon Photonic Waveguides
  • DOI:
    10.1021/acs.nanolett.0c02818
  • 发表时间:
    2020-09-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chang, Tian-Yun;Chen, Yueyang;Liu, Chang-Hua
  • 通讯作者:
    Liu, Chang-Hua
Ultrathin van der Waals Metalenses
  • DOI:
    10.1021/acs.nanolett.8b02875
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Liu, Chang-Hua;Zheng, Jiajiu;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Exciton–phonon interactions in nanocavity-integrated monolayer transition metal dichalcogenides
纳米腔集成单层过渡金属二硫属化物中的激子与声子相互作用
  • DOI:
    10.1038/s41699-020-0156-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Rosser, David;Fryett, Taylor;Ryou, Albert;Saxena, Abhi;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities
  • DOI:
    10.1021/acs.nanolett.8b02764
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chen, Yueyang;Ryou, Albert;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
  • DOI:
    10.1038/s41377-025-01888-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
  • 批准号:
    1836500
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Polarization Caloritronics: a pathway to electrically-controlled heat switches
偏振热电学:电控热开关的途径
  • 批准号:
    2133718
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A randomised controlled trial of Focal Electrically Administered Seizure Therapy (FEAST) in patients with severe depression
局灶性癫痫发作电疗法(FEAST)治疗重度抑郁症患者的随机对照试验
  • 批准号:
    nhmrc : GNT1159769
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Project Grants
Interconversion of Quantum States Between Photon and Electron Spin Using Electrically Controlled Quantum Dots
使用电控量子点实现光子和电子自旋之间量子态的相互转换
  • 批准号:
    17H06120
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Controlled Anisotropic Materials via Electrically Assisted Nanocomposite Fabrication
通过电辅助纳米复合材料制造受控各向异性材料的增材制造
  • 批准号:
    1663663
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Electrically controlled spin qubit in Ge/Si nanowire with fast radio-frequency readout
具有快速射频读出功能的 Ge/Si 纳米线电控自旋量子位
  • 批准号:
    17K14076
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
InSb Quantum Devices: All-electrically Controlled Electron Spins. (ACES)
InSb 量子器件:全电控制电子自旋。
  • 批准号:
    EP/L012995/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Porous Metal-organic Frameworks with Electrically Controlled Gates: Hosts having Directional Control over the Transmission of the Guest Molecules
具有电控门的多孔金属有机框架:对客体分子传输具有方向控制的主体
  • 批准号:
    26790016
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Electrically Controlled Metal-Insulator Transition and Its Terahertz Applications
电控金属-绝缘体转变及其太赫兹应用
  • 批准号:
    1128644
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RUI: Electrically Controlled Formation and Release of Admicelles for Solid Phase Extraction
RUI:固相萃取中电控胶束的形成和释放
  • 批准号:
    1008356
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了