On-chip dynamic temperature monitoring and thermal evaluation of superconducting wires via optical whispering-gallery mode technique

通过光学回音壁模式技术对超导线材进行片上动态温度监测和热评估

基本信息

  • 批准号:
    1067141
  • 负责人:
  • 金额:
    $ 30.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

1067141GuoTraditional tools in temperature measurement such as thermocouples, thermistors, and platinum resistance thermometers are intensity modulated. It is well known that optical frequency has an enormous information capacity and accuracy that would be impossible to duplicate with intensity signals. The objective of this project is to develop an optical frequency-modulated whispering-gallery-mode (WGM) based on-chip dynamic ultrafine temperature measurement system that will enable high-temperature superconductor (HTS) on-chip dynamic thermal management and power applications. Although optical WGMs in dielectric resonators have great potentials in molecular level and nanoscale detection and measurement technologies, many applications with WGMs suffer from thermal fluctuations due to the thermo-optic and thermal expansion effects. Nevertheless, the thermal effects can be transferred into precise temperature measurement and thermal characterization. This project proposes on-chip dynamic temperature monitoring, in which the sensor head is directly coated to the superconductor wire to form a thin ring and the contact temperature is measured through the WGM resonance frequency shift. The system will determine the critical temperature ( 100 K) in HTS with unprecedented fine resolution and accuracy. A coating study of dielectric materials on superconductor wires will be conducted to enable the fabrication of practical on-chip WGM annular micro-resonators. The project will focus on an extensive evaluation of the coated sensors including electrical, optical, and thermal aspects. A heat transfer analysis will enhance understanding thermal transport in HTS and the proposed sensors for many thermal management and power applications. Intellectual Merit: This project will improve understanding the fundamentals of photo-electro-thermal effects of materials and the temperature dependence of superconductivity at the micro/nanoscale. It pushes cryogenic temperature measurement resolution to an unprecedented level, providing a new capability for high-end scientific, industrial, space and military systems. Other features of the proposed microsensor include high stability, fast response, and microelectronics compatibility. Superconductor electronics has been experiencing rapid development and the power applications of HTS rely on efficient on-chip dynamic thermal management. The proposed system will measure the actual superconducting wire temperature without interference; and thus, precisely determine the critical temperature. Any tiny temperature improvement in cryogenics and superconductivity could be a milestone. The investigators and their team have successfully conducted some initial studies. They are well-equipped and well-positioned to conduct the proposed research and to fulfill the education goals. Broader Impacts: Successful development of the microsensor system updates necessary tools for precise measurement and scientific discovery. Compatibility with microelectronics will lead to integrated sensors for on-chip temperature monitoring which is still a challenging task. The project could potentially provide a powerful tool to study the HTS wire stability and be beneficial to the HTS wire and devices development and power applications in cables, motors, and transformers. The results obtained will be disseminated to the relevant research and engineering communities through publications, conference presentations and seminars. They may foster a commercial interest in applications to meet the demand for miniaturization, integration, low temperature, and high accuracy detection. The research and education will be quite useful for training graduate students and gaining meaningful research experience for undergraduates, in particular underrepresented minorities. It offers students the opportunities to expand their intellectual horizon to a bridge connecting the state-of-the-art engineering technologies and basic science. The curriculum and instructional labs at Rutgers will be improved. The international research and education collaboration will be enhanced.
1067141 Guo传统的温度测量工具,如热电偶、热敏电阻和铂电阻温度计,都是强度调制的。众所周知,光频具有巨大的信息容量和精度,这是不可能用强度信号复制的。本项目的目标是开发一种基于光调频回音壁模式(WGM)的片上动态超细温度测量系统,该系统将使高温超导体(HTS)片上动态热管理和功率应用成为可能。尽管介质谐振器中的光学WGM在分子水平和纳米尺度的检测和测量技术中具有巨大的潜力,但由于热光和热膨胀效应,许多WGM应用遭受热波动。然而,热效应可以转化为精确的温度测量和热表征。本项目提出了片上动态温度监测,其中传感器头直接涂覆到超导导线上形成薄环,通过WGM谐振频率偏移测量接触温度。该系统将以前所未有的高分辨率和高精度确定高温超导体的临界温度(100 K)。本研究将进行超导导线上介电材料的镀膜研究,以制作实用的晶片上WGM环形微谐振器。该项目将重点对涂层传感器进行广泛的评估,包括电气,光学和热方面。热传递分析将提高对高温超导体中热传递的理解,并为许多热管理和电源应用提出传感器。智力优势:该项目将提高对材料的光电热效应的基本原理和微/纳米尺度下超导性的温度依赖性的理解。它将低温温度测量分辨率提升到前所未有的水平,为高端科学、工业、航天和军事系统提供了新的能力。所提出的微传感器的其他特征包括高稳定性、快速响应和微电子兼容性。超导电子学正经历着快速的发展,高温超导的功率应用依赖于高效的片上动态热管理。所提出的系统将测量实际的超导导线的温度没有干扰,因此,精确地确定临界温度。低温学和超导学中任何微小的温度改进都可能是一个里程碑。研究人员和他们的团队已经成功地进行了一些初步研究。他们装备精良,并处于有利地位,进行拟议的研究和实现教育目标。更广泛的影响:微传感器系统的成功开发更新了精确测量和科学发现的必要工具。与微电子的兼容性将导致用于片上温度监测的集成传感器,这仍然是一项具有挑战性的任务。该项目可能为研究高温超导线材的稳定性提供一个强有力的工具,并有利于高温超导线材和器件的开发以及在电缆,电机和变压器中的电力应用。所取得的成果将通过出版物、会议介绍和研讨会传播给有关的研究和工程界。它们可以促进在满足小型化、集成化、低温和高精度检测的需求的应用中的商业兴趣。研究和教育将非常有益于培养研究生,并为本科生,特别是代表性不足的少数群体获得有意义的研究经验。它为学生提供了扩大知识视野的机会,成为连接最先进的工程技术和基础科学的桥梁。罗格斯大学的课程和教学实验室将得到改善。 加强国际研究和教育合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhixiong Guo其他文献

IMECE 2008-66371 3-D MICROFABRICATION AND SEPARATION OF PDMS BY ULTRA-SHORT PULSED LASER
IMECE 2008-66371 通过超短脉冲激光进行 PDMS 的 3D 微加工和分离
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huan Huang;Zhixiong Guo
  • 通讯作者:
    Zhixiong Guo
Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance
  • DOI:
    https://doi.org/10.1007/s12274-022-4069-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Zhimin Tian;Junlong Zhao;Shoujie Zhao;Huicheng Li;Zhixiong Guo;Zechen Liang;Jiayuan Li;Yongquan Qu;Dongfeng Chen;Lei Liu
  • 通讯作者:
    Lei Liu
‘Liuyuezao’: A New Very Early-ripening Pummelo Cultivar
  • DOI:
    https://doi.org/10.21273/HORTSCI16183-21
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Tengfei Pan;Peibin Huang;Jianwen Ye;Dongming Pan;Zhijun Fu;Heli Pan;Zhixiong Guo;Wenqin She;Yuan Yu
  • 通讯作者:
    Yuan Yu
Energy Transfer to Optical Microcavities With Waveguides
通过波导将能量传输到光学微腔
Near-Field Radiation Interaction With Molecules in Optical Microcavity
光学微腔中分子的近场辐射相互作用

Zhixiong Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhixiong Guo', 18)}}的其他基金

Collaborative Research: Smart prismatic-louver technology for enhanced daylighting and management of thermal loads in green buildings
合作研究:智能棱柱百叶窗技术可增强绿色建筑的采光和热负荷管理
  • 批准号:
    1505706
  • 财政年份:
    2015
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
Collaborative: Analysis of Mechanical Properties and Thermal Effects of Cornea Following Femtosecond Laser Intrastromal Refractive Surgery
协作:飞秒激光基质屈光手术后角膜的机械特性和热效应分析
  • 批准号:
    0827473
  • 财政年份:
    2008
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
Evanescent Radiation and Photothermal Effect in Whispering-Gallery Mode Optical Microcavities
回音壁模式光学微腔中的倏逝辐射和光热效应
  • 批准号:
    0651737
  • 财政年份:
    2007
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
SGER: Single Molecule-Radiation Interaction in Whispering-Gallery Mode Evanescent Field
SGER:耳语画廊模式倏逝场中的单分子辐射相互作用
  • 批准号:
    0541585
  • 财政年份:
    2005
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
Engineering Research Equipment: Ultrafast Laser System for Microscale Radiation Transport Studies
工程研究设备:用于微尺度辐射传输研究的超快激光系统
  • 批准号:
    0318001
  • 财政年份:
    2003
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
  • 批准号:
    11172015
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
  • 批准号:
    81060329
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
大规模动态网络环境中协同组操作一致性维护算法的正确性证明及其验证的研究
  • 批准号:
    60803118
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic temperature measurement and real-time monitoring for characterising material formability during straining
动态温度测量和实时监控,用于表征应变期间材料的可成形性
  • 批准号:
    10089588
  • 财政年份:
    2024
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Collaborative R&D
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
  • 批准号:
    10723977
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
Temperature-Responsive Controlled Drug Release by Dynamic Covalent Polymeric Materials for Cancer Chronotherapy
用于癌症计时疗法的动态共价聚合物材料的温度响应控制药物释放
  • 批准号:
    22KJ0434
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamic Evaluation of Neural Mechanisms for Affective Touch: Pathways for Touch-induced Pleasantness and Pain Modulation
情感触摸神经机制的动态评估:触摸引起的愉悦感和疼痛调节的途径
  • 批准号:
    10660199
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
Coupled analysis of measurement using 3D CT and numerical simulation for iron ore high temperature complex dynamic behavior
铁矿石高温复杂动态行为3D CT测量与数值模拟耦合分析
  • 批准号:
    23K17810
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Epigenetic regulation underlying phenotypic variation and driving evolutionary trajectories
表型变异和驱动进化轨迹的表观遗传调控
  • 批准号:
    10604435
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
Room-temperature self-healing glassy polymer
室温自修复玻璃状聚合物
  • 批准号:
    22KJ0971
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Gene positioning and dynamic chromatin organization of the human genome
人类基因组的基因定位和动态染色质组织
  • 批准号:
    10714346
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
Polysaccharide putty formulations for tissue regeneration
用于组织再生的多糖腻子配方
  • 批准号:
    10627055
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
MRI: Acquisition of a Multifunctional Rheometer with High Temperature, Dynamic Mechanical Analysis and Tribological Testing Capabilities for Research and Education
MRI:采购具有高温、动态机械分析和摩擦学测试功能的多功能流变仪,用于研究和教育
  • 批准号:
    2216191
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了