Moving Boundary Methods for Stochastic Control Problems

随机控制问题的移动边界方法

基本信息

  • 批准号:
    1100710
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-01 至 2015-10-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to develop and extend an emerging class of techniques referred to as Moving Boundary Methods for solving hard free-boundary problems in stochastic control. Stochastic control refers to optimal decision making under uncertainty. Applications can be found in a variety of physical, economic, management and biological systems. Despite their wide applicability, problems in these classes are not analytically tractable except in very special cases and several remain unsolved even numerically. This award specifically identifies some problems in financial engineering, operations management and healthcare. Each of these problems, while being very significant by itself, also has distinct features that will make the methods developed, applicable to larger classes of problems. If successful, the developed methods will solve a large class of decision-making problems previously considered intractable. The project brings together a set of very important and hard control problems under the unifying framework of free-boundary problems and seeks to develop a set of novel computational methods. Success in the project has two major implications. First, it significantly advances the research on stochastic control. Second, the results and insights gained in each of the four specific projects will have a direct impact in financial engineering, operations management and healthcare. Optimal decision-making in healthcare is in its infancy and is poised to have a huge impact in prolonging life expectancies and reducing costs. Success in this project will also give healthcare professionals the much-needed confidence to view more problems from a quantitative perspective.
该奖项的研究目标是发展和扩展一类新兴的技术,称为移动边界方法,用于解决随机控制中的硬自由边界问题。随机控制是指在不确定性条件下的最优决策。应用可以在各种物理,经济,管理和生物系统中找到。尽管其广泛的适用性,在这些类的问题是不是分析处理,除非在非常特殊的情况下,有几个仍然没有解决,甚至数字。该奖项特别指出了金融工程、运营管理和医疗保健领域的一些问题。这些问题中的每一个,虽然本身非常重要,但也有不同的特征,这些特征将使所开发的方法适用于更大类别的问题。如果成功,开发的方法将解决以前被认为是棘手的一大类决策问题。该项目汇集了一组非常重要的和硬控制的自由边界问题的统一框架下的问题,并寻求开发一套新的计算方法。该项目的成功有两个主要影响。首先,它极大地推进了随机控制的研究。其次,四个具体项目中的每一个项目所获得的结果和见解将对金融工程、运营管理和医疗保健产生直接影响。医疗保健领域的最佳决策仍处于起步阶段,并有望对延长预期寿命和降低成本产生巨大影响。这个项目的成功也将给医疗保健专业人员带来急需的信心,从定量的角度看待更多的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kumar Muthuraman其他文献

Diversification of fuel costs accounting for load variation
  • DOI:
    10.1016/j.enpol.2011.12.004
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suriya Ruangpattana;Paul V. Preckel;Douglas J. Gotham;Kumar Muthuraman;Marco Velástegui;Thomas L. Morin;Nelson A. Uhan
  • 通讯作者:
    Nelson A. Uhan

Kumar Muthuraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kumar Muthuraman', 18)}}的其他基金

Computational Methods for Multi-Product Stochastic Inventory Control
多产品随机库存控制的计算方法
  • 批准号:
    0822377
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Computational Methods for Multi-Product Stochastic Inventory Control
多产品随机库存控制的计算方法
  • 批准号:
    0620879
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Integrable systems/solitons, such as methods of their construction or boundary conditions
可积系统/孤子,例如其构造方法或边界条件
  • 批准号:
    2620748
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
  • 批准号:
    2137305
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
  • 批准号:
    20K14357
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
  • 批准号:
    423317638
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Improved Methods for Determining Soil-Atmosphere Flux Boundary Conditions at Mine Waste Repositories
确定矿山废物处置场土壤-大气通量边界条件的改进方法
  • 批准号:
    RGPIN-2015-06349
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
New implementations of the Calderon preconditioning for boundary element methods
边界元方法 Calderon 预处理的新实现
  • 批准号:
    18K18063
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Parabolic methods for elliptic boundary value problems
椭圆边值问题的抛物线方法
  • 批准号:
    DP180100431
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Projects
On the stability of boundary integral methods in wave problems
波浪问题中边界积分法的稳定性
  • 批准号:
    18H03251
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了