Tensor Products of Operator Systems and the Kadison-Singer Problem
算子系统的张量积和 Kadison-Singer 问题
基本信息
- 批准号:1101231
- 负责人:
- 金额:$ 21.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the principal investigator will pursue two major themes: (1) the Kadison-Singer problem and (2) the theory of tensor products of operator systems. The Kadison-Singer problem is a major problem in this area of mathematics that has been unsolved since 1954. The principal investigator has made some recent progress on the problem and will explore three new avenues of attack on it. Operator systems and completely positive maps play a central role in several areas of mathematics, including quantum computing, quantum information theory, and applications to C*-algebras and von Neumann algebras. The principal investigator will continue to develop the general tensor theory of operator systems and continue to apply this theory to problems in quantum information and quantum computing.The area of mathematics known as frame theory is concerned with systems that are used to sample signals of various types and then to reconstruct the signals from the samples, such as one does when sampling a soundwave, burning it to a CD, then playing back the music from the CD. Engineers always build redundancy (or oversampling) into such systems in order to ameliorate the effects of errors in the numerical values of the samples. Progress on the Kadison-Singer problem should translate to a more precise understanding of how redundancy behaves than exists at the present time. Roughly, it asks whether or not systems with "finite redundancy" can always be divided into finitely many systems with no redundancy. The second goal of the project is concerned with developing the mathematics of quantum information theory and quantum computing. Although no one can predict whether or not quantum computers will ever be built, if they are, it is certainly vital to the national interests to have developed sufficient human resources to be competitive in putting them to use. Consequently, the principal investigator's students are introduced to this area, and his work on the tensor theory of operator systems has applications to questions about parallel structure in the quantum setting.
在这个项目中,主要研究者将追求两个主要主题:(1)Kadison-Singer问题和(2)算子系统的张量积理论。Kadison-Singer问题是这一数学领域的一个重大问题,自1954年以来一直没有解决。该问题的主要研究者最近取得了一些进展,并将探索三种新的攻击途径。算子系统和完全正映射在数学的几个领域中发挥着核心作用,包括量子计算,量子信息论,以及C*-代数和冯诺依曼代数的应用。首席研究员将继续发展算子系统的一般张量理论,并继续将该理论应用于量子信息和量子计算中的问题。数学领域被称为框架理论,涉及用于对各种类型的信号进行采样,然后从样本中重建信号的系统,例如当对声波进行采样时,将其刻录到CD上,然后播放CD中的音乐。工程师们总是在这样的系统中建立冗余(或过采样),以改善样本数值误差的影响。在Kadison-Singer问题上的进展应该转化为对冗余行为的更精确的理解。粗略地说,它问的是,具有“有限冗余”的系统是否总是可以被划分为多个没有冗余的系统。该项目的第二个目标是发展量子信息理论和量子计算的数学。虽然没有人能预测量子计算机是否会被建造出来,但如果是的话,开发足够的人力资源,使其在使用上具有竞争力,对国家利益来说肯定是至关重要的。因此,首席研究员的学生介绍了这一领域,他的工作张量理论的运营商系统的应用问题的并行结构的量子设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vern Paulsen其他文献
COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) By VERN PAULSEN: 300 pp., 47.50 (US$65.00), ISBN 0-521-81669-6 (Cambridge University Press, 2002)
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Vern Paulsen - 通讯作者:
Vern Paulsen
Vern Paulsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vern Paulsen', 18)}}的其他基金
Collaborative Research: GPOTS 2011 & 2012
合作研究:GPOTS 2011
- 批准号:
1101654 - 财政年份:2011
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Frames, Interpolation and Injective Envelopes
框架、插值和内射包络
- 批准号:
0600191 - 财政年份:2006
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Operator Algebras, Interpolation and Frames
算子代数、插值和框架
- 批准号:
0300128 - 财政年份:2003
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Operator Algebras, Operator Spaces, Frames and Applications
算子代数、算子空间、框架和应用
- 批准号:
0070376 - 财政年份:2000
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Operator Algebras, Modules and Completely Bounded Maps
算子代数、模和全有界图
- 批准号:
9706996 - 财政年份:1997
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras and Reproducing Kernel Hilbert Spaces
数学科学:算子代数和再现核希尔伯特空间
- 批准号:
9311487 - 财政年份:1993
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras and Reproducing Kernel Hilbert Spaces
数学科学:算子代数和再现核希尔伯特空间
- 批准号:
9105571 - 财政年份:1991
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
8903104 - 财政年份:1989
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Joint K-spectral Sets and Subnormal Operators
数学科学:联合 K 谱集和次正规算子
- 批准号:
8701498 - 财政年份:1987
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Completely Bounded Maps on Operator Algebras
数学科学:算子代数的完全有界映射
- 批准号:
8301395 - 财政年份:1983
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
相似海外基金
University of Strathclyde (The) and Rumbol Products Limited KTP23_24 R3
斯特拉斯克莱德大学 (The) 和 Rumbol Products Limited KTP23_24 R3
- 批准号:
10086015 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Knowledge Transfer Network
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Collaborative R&D
Queen’s University of Belfast and Tobermore Concrete Products Limited KTP 22_23 R4
贝尔法斯特女王大学和 Tobermore Concrete Products Limited KTP 22_23 R4
- 批准号:
10056494 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Knowledge Transfer Partnership
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Training Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
- 批准号:
EP/X040992/1 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Research Grant
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
- 批准号:
EP/Y002482/1 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Research Grant
Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
- 批准号:
2326720 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
- 批准号:
2411680 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
University of Bath (The) and Hydraulic System Products Limited KTP 23_24 R2
巴斯大学 (The) 和液压系统产品有限公司 KTP 23_24 R2
- 批准号:
10077617 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Knowledge Transfer Partnership