Mathematical Sciences: Operator Algebras and Reproducing Kernel Hilbert Spaces
数学科学:算子代数和再现核希尔伯特空间
基本信息
- 批准号:9311487
- 负责人:
- 金额:$ 14.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-12-15 至 1997-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9311487 Paulsen This project concerns three main lines of research. First, developing a Morita theory for operator algebras. This includes several stable isomorphism theorems and a deeper study of projective modules over operator algebras. Second, the project will examine operator space geometry and tensor products of operator spaces. Third, the project will conduct a study of analytic reproducing kernel Hilbert spaces. This research is in the general area of modern analysis and concerns the structure of spaces of operators or transformations. A fundamental problem in any area of mathematics is determining when two objects are equivalent and their geometry is similar. In this work, the investigators examine the families of transformations on a space and relate these transformations or operators to categories of structures through equivalences. The point is that theory known for one structure can often be shown to carry naturally to an equivalent structure. Thus, the approach is to demonstrate that rather complex families of operators have natural equivalences ***
[311487]保尔森这个项目涉及三个主要的研究方向。首先,发展了算子代数的Morita理论。这包括几个稳定同构定理和对算子代数上的射影模的更深入的研究。其次,该项目将研究算子空间几何和算子空间的张量积。第三,该项目将进行解析再现核希尔伯特空间的研究。该研究属于现代分析的一般领域,涉及算子或变换的空间结构。任何数学领域的一个基本问题是确定两个物体何时是等价的,它们的几何形状是否相似。在这项工作中,研究人员研究了空间上的变换族,并通过等价将这些变换或算子与结构的类别联系起来。关键是,对一个结构已知的理论往往可以被证明自然地适用于另一个等效结构。因此,该方法是证明相当复杂的算子族具有自然等价性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vern Paulsen其他文献
COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) By VERN PAULSEN: 300 pp., 47.50 (US$65.00), ISBN 0-521-81669-6 (Cambridge University Press, 2002)
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Vern Paulsen - 通讯作者:
Vern Paulsen
Vern Paulsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vern Paulsen', 18)}}的其他基金
Collaborative Research: GPOTS 2011 & 2012
合作研究:GPOTS 2011
- 批准号:
1101654 - 财政年份:2011
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Tensor Products of Operator Systems and the Kadison-Singer Problem
算子系统的张量积和 Kadison-Singer 问题
- 批准号:
1101231 - 财政年份:2011
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Frames, Interpolation and Injective Envelopes
框架、插值和内射包络
- 批准号:
0600191 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Operator Algebras, Interpolation and Frames
算子代数、插值和框架
- 批准号:
0300128 - 财政年份:2003
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Operator Algebras, Operator Spaces, Frames and Applications
算子代数、算子空间、框架和应用
- 批准号:
0070376 - 财政年份:2000
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Operator Algebras, Modules and Completely Bounded Maps
算子代数、模和全有界图
- 批准号:
9706996 - 财政年份:1997
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras and Reproducing Kernel Hilbert Spaces
数学科学:算子代数和再现核希尔伯特空间
- 批准号:
9105571 - 财政年份:1991
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
8903104 - 财政年份:1989
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Joint K-spectral Sets and Subnormal Operators
数学科学:联合 K 谱集和次正规算子
- 批准号:
8701498 - 财政年份:1987
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Completely Bounded Maps on Operator Algebras
数学科学:算子代数的完全有界映射
- 批准号:
8301395 - 财政年份:1983
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF-CBMS Regional Conference in the Mathematical Sciences "Graph Algebras: Operator Algebras We Can See", May 31-June 4, 2004
NSF-CBMS 数学科学区域会议“图代数:我们可以看到的算子代数”,2004 年 5 月 31 日至 6 月 4 日
- 批准号:
0332279 - 财政年份:2003
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Nonhomogeneous Harmonic Analysis, Weights, and Applications to Problems in Complex Analysis and Operator Theory"
NSF/CBMS 数学科学区域会议 - “非齐次调和分析、权重以及在复分析和算子理论中问题的应用”
- 批准号:
0121284 - 财政年份:2002
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Operator Algebra
数学科学:算子代数问题
- 批准号:
9706713 - 财政年份:1997
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Commutant Lifting Methods in Operator Theory and Robust Control Theory
数学科学:算子理论和鲁棒控制理论中的交换提升方法
- 批准号:
9706838 - 财政年份:1997
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Algebras and Noncommutative Topology
数学科学:算子代数和非交换拓扑
- 批准号:
9706982 - 财政年份:1997
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Trace Extensions, Commutator Spaces and Single Commutators with Applications to the Homology, Determinants and K-Theory of Operator Ideals
数学科学:迹扩展、换向器空间和单换向器及其在算子理想的同调性、行列式和 K 理论中的应用
- 批准号:
9706911 - 财政年份:1997
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Function and Operator Theory on Holomorphic Spaces
数学科学:全纯空间上的函数和算子理论
- 批准号:
9622890 - 财政年份:1996
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Application of Operator Theory to Random Matrices and Random Variables
数学科学:算子理论在随机矩阵和随机变量中的应用
- 批准号:
9623278 - 财政年份:1996
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Fifth West Coast Operator Algebra Seminar; Fall, 1996; British Columbia, Canada
数学科学:第五届西海岸算子代数研讨会;
- 批准号:
9632726 - 财政年份:1996
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Multivariable Operator Theory
数学科学:多变量算子理论
- 批准号:
9623142 - 财政年份:1996
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant














{{item.name}}会员




