Groupoids, Deformations and Noncommutative Geometry

群形、变形和非交换几何

基本信息

  • 批准号:
    1101827
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to continue the study of problems in noncommutative geometry using tools from deformation theory, Lie groupoids, and operator algebras. They include the study of deformation quantizations,quantum groupoids and twisted cohomology over differentiable stacks. The project also involves studying the Chern-Connes character map for twisted K-theory, delocalized twisted equivariant cohomology, and its ring structure. It also aims to study C*-algebras associated to non-abelian gerbes and 2-groupoids.The idea of noncommutative geometry is to study geometry via algebras of functions on ``noncommutative manifolds''. On such a ``noncommutative manifold'', the relevant objects are no longer points in a space, but rather an associative algebra, which may not be commutative. Many ``noncommutative spaces'' are obtained either as deformations of commutative algebras or as convolution algebras of groupoids. The theory of deformation quantization lies on the boundary between classical and quantum mechanics. The mathematical structures of the two theories are very different, so it is challenging to understand how the transition from classical to quantum takes place. Quantization, roughly speaking, is the study and prediction of quantum phenomena, which is normally described by noncommutative associative algebras, from the geometry of their underlying classical counterparts. The Kontsevich formality theorem in a certain sense confirms that such a prediction is indeed possible, which implies that there is a deep interplay between noncommutative algebras and geometry. Groupoid convolution algebras, substituting for algebras of functions (on badly behaved quotient spaces), play a central role in Connes' noncommutative geometry program. They also play an important role in the study of the stringy space-time, or gerbes. The purpose of the project, which is centered around the application of noncommutative geometry, is to investigate questions in these fields motivated by mathematical physics. More specifically, it is motivated by a combination of ideas from quantum groups,representation theory, differential geometry, noncommutative geometry, and operator algebras. Thus the interdisciplinary nature of the proposed project promotes further interaction between these fields.
PI建议使用变形理论、李群和算子代数等工具继续研究非交换几何中的问题。它们包括变形量子化、量子群和可微堆栈上的扭曲上同调的研究。研究了扭曲k理论的chen - connes特征映射、离域扭曲等变上同调及其环结构。它还旨在研究与非阿贝尔gerbes和2-群类群相关的C*代数。非交换几何的思想是通过“非交换流形”上的函数代数来研究几何。在这种“非交换流形”上,相关对象不再是空间中的点,而是一个可能不可交换的关联代数。许多“非交换空间”要么是交换代数的变形,要么是群类群的卷积代数。变形量子化理论处于经典力学和量子力学的边界上。这两种理论的数学结构非常不同,因此很难理解从经典到量子的过渡是如何发生的。量子化,粗略地说,是对量子现象的研究和预测,量子现象通常是由非交换结合代数描述的,来自它们潜在的经典对立物的几何。Kontsevich形式定理在某种意义上证实了这种预测确实是可能的,这意味着非交换代数与几何之间存在着深刻的相互作用。群卷积代数取代了函数代数(在不良的商空间上),在cones的非交换几何程序中起着核心作用。它们在弦时空(gerbes)的研究中也起着重要作用。该项目的目的是围绕非交换几何的应用,研究由数学物理引起的这些领域的问题。更具体地说,它是由量子群、表示理论、微分几何、非交换几何和算子代数的思想组合而成的。因此,拟议项目的跨学科性质促进了这些领域之间的进一步互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Xu其他文献

Using the Novel Method of Nonthermal Plasma To Add CI Active Sites on Activated Carbon for Removal of Mercury from Flue Gas
利用非热等离子体在活性炭上添加CI活性位点的新方法去除烟气中的汞
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Bi Zhang;Xiaobo Zeng;Ping Xu;Juan Chen;Yang Xu;Guangqian Luo;Minghou Xu;Hong Yao
  • 通讯作者:
    Hong Yao
Formality theorem for g -manifolds ✩
g 流形的形式定理 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Hsuan;M. Stiénon;Ping Xu;Jacky Michéa
  • 通讯作者:
    Jacky Michéa
Use of the familiarity difference cue in inferential judgments
在推理判断中使用熟悉度差异线索
  • DOI:
    10.3758/s13421-017-0765-5
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ping Xu;C. González;Justin M. Weinhardt;Janna Chimeli;Figen Karadogan
  • 通讯作者:
    Figen Karadogan
Assignment of absolute configuration of sulfinyl dilactones: Optical rotations and 1H NMR experiment and DFT calculations
亚磺酰双内酯的绝对构型分配:旋光度和1H NMR实验以及DFT计算
  • DOI:
    10.1016/j.molstruc.2010.11.076
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Robert J. Doerksen;Ping Xu;Gang Fu
  • 通讯作者:
    Gang Fu
Coexistence of two D‐lactate‐utilizing systems in Pseudomonas putida KT2440
恶臭假单胞菌 KT2440 中两种乳酸利用系统的共存
  • DOI:
    10.1111/1758-2229.12429
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yingxin Zhang;Tianyi Jiang;Binbin Sheng;Yangdanyu Long;Chao Gao;Cuiqing Ma;Ping Xu
  • 通讯作者:
    Ping Xu

Ping Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Xu', 18)}}的其他基金

Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
  • 批准号:
    2001599
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
  • 批准号:
    1707545
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Higher Structures and Groupoids in Noncommutative Geometry
非交换几何中的高级结构和群形
  • 批准号:
    1406668
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Conferences and School in Poisson Geometry
泊松几何会议和学校
  • 批准号:
    1212475
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Operator Algebras and Noncommutative Geometry
算子代数和非交换几何
  • 批准号:
    0801129
  • 财政年份:
    2008
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
IHP Workshop on Groupoids in Operator Algebras and Noncommutative Geometry
IHP 算子代数和非交换几何中的群形研讨会
  • 批准号:
    0654146
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
IHP Workshop on "Higher Structures in Geometry and Physics"
IHP“几何和物理高级结构”研讨会
  • 批准号:
    0633440
  • 财政年份:
    2006
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
C* - Algebras, Groupoids, and Noncommutative Geometry
C* - 代数、群形和非交换几何
  • 批准号:
    0605725
  • 财政年份:
    2006
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
  • 批准号:
    0406368
  • 财政年份:
    2004
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Projects
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
  • 批准号:
    23K04023
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
  • 批准号:
    22KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
  • 批准号:
    2237237
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Deformations of graded commutative rings
分级交换环的变形
  • 批准号:
    572928-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了