Operator Algebras and Noncommutative Geometry
算子代数和非交换几何
基本信息
- 批准号:0801129
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractXuThe project involves studying problems in noncommutative geometry using toolsfrom operator algebras, in particular groupoid C*-algebras. Xu proposes tocontinue the study of twisted K-theory over differentiable stacks usingKK-theory of C*-algebras, based on the theory developed by Tu,Laurent, and himself. The problems include studying the periodic cyclichomology of convolution algebras of proper Lie groupoids, investigating therelation between the twisted K0-group and the Grothendieck group of twistedvector bundles over groupoids, studying the Chern-Connes character map fortwisted K-theory, and studying the ring structure on global twistedcohomology. The project also aims to study C*-algebras associated tonon-abelian gerbes and 2-groupoids.The idea of noncommutative geometry in the sense of Connes is to study geometry via algebras of functions on ?noncommutative manifolds.? On such a ?noncommutative manifold,? the relevant objects are no longer points in a space, but rather an associative algebra, which may not be commutative. Nevertheless, many notions in classical (commutative) geometry including vector bundles, connections, K-theory, (co-)homology, elliptic pseudo-differential operators, Chern characters, and measures can be generalized to noncommutative settings arising naturally from geometric situations. In string theory, space-time is modeled by a new kind of mathematical structure called gerbes. A very useful way to think of the stringy space-time is to consider it as a ?noncommutative space? in the sense of Connes. Such a noncommutative space can be constructed using the convolution algebra of a certain groupoid. The project, which is centered on the application of noncommutative geometry and operator algebras, is to investigate questions motivated from mathematical physics by a combination of ideas from algebraic and differential geometry, noncommutative geometry, operator algebras, and KK-theory, and thus the project promotes further interaction between these fields.
本项目涉及利用算子代数,特别是广群C*-代数的工具研究非交换几何问题。在Tu,Laurent和他的理论的基础上,Xu提出利用C*-代数的KK-理论继续研究可微堆上的扭曲K-理论。这些问题包括研究真李群胚上卷积代数的周期循环同调,研究群胚上扭向量丛的扭K 0-群与Grothendieck群之间的关系,研究扭K-理论的Chern-Connes特征映射,研究整体扭上同调环的结构。该项目还旨在研究与tonon-abel gerbes和2-广群胚相关的C*-代数。非对易流形 在这样一个?非对易流形?相关的对象不再是空间中的点,而是结合代数,它可能不是交换的。然而,许多概念在古典(交换)几何,包括向量丛,连接,K-理论,(上)同调,椭圆伪微分算子,陈特征,和措施可以推广到非交换设置自然产生的几何情况。 在弦理论中,时空是由一种叫做格贝斯的新型数学结构建模的。一个非常有用的方法来考虑弦时空是考虑它作为一个?非对易空间?在康纳斯的意义上。 这样的非交换空间可以用某个广群的卷积代数来构造。 该项目以非交换几何和算子代数的应用为中心,旨在通过代数和微分几何,非交换几何,算子代数和KK理论的思想组合来研究数学物理中的问题,从而促进这些领域之间的进一步互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Xu其他文献
Using the Novel Method of Nonthermal Plasma To Add CI Active Sites on Activated Carbon for Removal of Mercury from Flue Gas
利用非热等离子体在活性炭上添加CI活性位点的新方法去除烟气中的汞
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:11.4
- 作者:
Bi Zhang;Xiaobo Zeng;Ping Xu;Juan Chen;Yang Xu;Guangqian Luo;Minghou Xu;Hong Yao - 通讯作者:
Hong Yao
Formality theorem for g -manifolds ✩
g 流形的形式定理 ✩
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Acad;Sci;Ser. I Paris;Hsuan;M. Stiénon;Ping Xu;Jacky Michéa - 通讯作者:
Jacky Michéa
Use of the familiarity difference cue in inferential judgments
在推理判断中使用熟悉度差异线索
- DOI:
10.3758/s13421-017-0765-5 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Ping Xu;C. González;Justin M. Weinhardt;Janna Chimeli;Figen Karadogan - 通讯作者:
Figen Karadogan
Assignment of absolute configuration of sulfinyl dilactones: Optical rotations and 1H NMR experiment and DFT calculations
亚磺酰双内酯的绝对构型分配:旋光度和1H NMR实验以及DFT计算
- DOI:
10.1016/j.molstruc.2010.11.076 - 发表时间:
2011-02 - 期刊:
- 影响因子:3.8
- 作者:
Robert J. Doerksen;Ping Xu;Gang Fu - 通讯作者:
Gang Fu
Coexistence of two D‐lactate‐utilizing systems in Pseudomonas putida KT2440
恶臭假单胞菌 KT2440 中两种乳酸利用系统的共存
- DOI:
10.1111/1758-2229.12429 - 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Yingxin Zhang;Tianyi Jiang;Binbin Sheng;Yangdanyu Long;Chao Gao;Cuiqing Ma;Ping Xu - 通讯作者:
Ping Xu
Ping Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Xu', 18)}}的其他基金
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
- 批准号:
1707545 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Higher Structures and Groupoids in Noncommutative Geometry
非交换几何中的高级结构和群形
- 批准号:
1406668 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Conferences and School in Poisson Geometry
泊松几何会议和学校
- 批准号:
1212475 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Groupoids, Deformations and Noncommutative Geometry
群形、变形和非交换几何
- 批准号:
1101827 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
IHP Workshop on Groupoids in Operator Algebras and Noncommutative Geometry
IHP 算子代数和非交换几何中的群形研讨会
- 批准号:
0654146 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
IHP Workshop on "Higher Structures in Geometry and Physics"
IHP“几何和物理高级结构”研讨会
- 批准号:
0633440 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
C* - Algebras, Groupoids, and Noncommutative Geometry
C* - 代数、群形和非交换几何
- 批准号:
0605725 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
- 批准号:
0406368 - 财政年份:2004
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Function algebras and operator algebras arising in noncommutative harmonic analysis
非交换调和分析中出现的函数代数和算子代数
- 批准号:
2599047 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Spring Institute in Noncommutative Geometry and Operator Algebras 2019
Spring 学院非交换几何和算子代数 2019
- 批准号:
1855778 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Spring Institute on Noncommutative Geometry and Operator Algebras 2018
Spring 非交换几何和算子代数研究所 2018
- 批准号:
1800204 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Noncommutative analysis based on operator algebras
基于算子代数的非交换分析
- 批准号:
18H01122 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements