C* - Algebras, Groupoids, and Noncommutative Geometry
C* - 代数、群形和非交换几何
基本信息
- 批准号:0605725
- 负责人:
- 金额:$ 12.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Xu proposes to continue the study of differential stacks and grebes in terms of Lie groupoids. Xu also proposes to investigate some aspects of twisted $K$-theory over differentiable stacks using groupoids and KK-theory of C^*-algebras, based on the theory developed by Tu, Laurent-Gengoux and himself. These include investigating ring structures on twisted K-theory groups, studying the relation between the twisted K^0-group and the Grothendieck group of twisted vector bundles over groupoids, developing twisted equivariant cohomology and studying its relation with twisted equivariant $K$-theory groups under the Chern-Connes character map. The project also aims at the quantization of Lie bialgebroids and quasi-Poisson groupoids.Groupoids are useful tools in studying the symmetry of various geometric problems. They also appear naturally in foliation theory as well as in modern Poisson geometry. Groupoid C^*-algebras, on the other hand, have been studied for more than two decades by operator algebraists, and they play an important role in noncommutative differential geometry. Indeed noncommutative geometry is the study of geometry through operator algebras, which has applications to many areas of mathematics including analysis, topology and geometry, mathematical physics and number theory. A stack, roughly speaking, is a Morita equivalence class of groupoids. (Lie) groupoids relate to (differentiable) stacks like open covers relate to manifolds. Just like there are many ways to describe the same manifold by open covers and gluing data, there are many groupoids describing the same stack. The equivalence relation defined on groupoids is the Morita equivalence. The project, which is centered around the application of Lie groupoids, is to investigate questions motivated from mathematical physics, in particular string theory, by a combination of ideas from algebraic geometry, noncommutative geometry, operator algebras and KK-theory, and Poisson geometry. Thus it promotes further interaction between these fields.
Xu建议继续从李群类群的角度研究微分堆和梯度。Xu还在Tu, Laurent-Gengoux和他自己的理论基础上,提出了利用群类和C^*-代数的kk -理论研究可微堆栈上的扭曲K$-理论的某些方面。这些成果包括研究扭曲K-理论群上的环结构,研究类群上扭曲向量束的扭曲K^0群与Grothendieck群的关系,发展扭曲等变上同调,并研究其在chen - connes特征映射下与扭曲等变$K$-理论群的关系。本项目还致力于李双代数群和拟泊松群的量子化。群拟是研究各种几何问题对称性的有用工具。它们也自然地出现在叶理理论和现代泊松几何中。另一方面,类群C^*-代数已经被算子代数家研究了二十多年,它们在非交换微分几何中起着重要的作用。事实上,非交换几何是通过算子代数来研究几何的,它在数学的许多领域都有应用,包括分析、拓扑和几何、数学物理和数论。粗略地说,堆栈是群类群的森田等价类。(Lie)群类群与(可微)堆栈的关系就像开盖与流形的关系一样。就像有许多方法可以通过打开盖子和粘合数据来描述相同的流形一样,也有许多群类群来描述相同的堆栈。在群类群上定义的等价关系是Morita等价。该项目以李群样的应用为中心,通过结合代数几何、非交换几何、算子代数和kk理论以及泊松几何的思想,研究数学物理,特别是弦理论中产生的问题。因此,它促进了这些领域之间的进一步互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Xu其他文献
Using the Novel Method of Nonthermal Plasma To Add CI Active Sites on Activated Carbon for Removal of Mercury from Flue Gas
利用非热等离子体在活性炭上添加CI活性位点的新方法去除烟气中的汞
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:11.4
- 作者:
Bi Zhang;Xiaobo Zeng;Ping Xu;Juan Chen;Yang Xu;Guangqian Luo;Minghou Xu;Hong Yao - 通讯作者:
Hong Yao
Formality theorem for g -manifolds ✩
g 流形的形式定理 ✩
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Acad;Sci;Ser. I Paris;Hsuan;M. Stiénon;Ping Xu;Jacky Michéa - 通讯作者:
Jacky Michéa
Use of the familiarity difference cue in inferential judgments
在推理判断中使用熟悉度差异线索
- DOI:
10.3758/s13421-017-0765-5 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Ping Xu;C. González;Justin M. Weinhardt;Janna Chimeli;Figen Karadogan - 通讯作者:
Figen Karadogan
Assignment of absolute configuration of sulfinyl dilactones: Optical rotations and 1H NMR experiment and DFT calculations
亚磺酰双内酯的绝对构型分配:旋光度和1H NMR实验以及DFT计算
- DOI:
10.1016/j.molstruc.2010.11.076 - 发表时间:
2011-02 - 期刊:
- 影响因子:3.8
- 作者:
Robert J. Doerksen;Ping Xu;Gang Fu - 通讯作者:
Gang Fu
Coexistence of two D‐lactate‐utilizing systems in Pseudomonas putida KT2440
恶臭假单胞菌 KT2440 中两种乳酸利用系统的共存
- DOI:
10.1111/1758-2229.12429 - 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Yingxin Zhang;Tianyi Jiang;Binbin Sheng;Yangdanyu Long;Chao Gao;Cuiqing Ma;Ping Xu - 通讯作者:
Ping Xu
Ping Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Xu', 18)}}的其他基金
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Continuing Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
- 批准号:
1707545 - 财政年份:2017
- 资助金额:
$ 12.74万 - 项目类别:
Continuing Grant
Higher Structures and Groupoids in Noncommutative Geometry
非交换几何中的高级结构和群形
- 批准号:
1406668 - 财政年份:2014
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Conferences and School in Poisson Geometry
泊松几何会议和学校
- 批准号:
1212475 - 财政年份:2012
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Groupoids, Deformations and Noncommutative Geometry
群形、变形和非交换几何
- 批准号:
1101827 - 财政年份:2011
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Operator Algebras and Noncommutative Geometry
算子代数和非交换几何
- 批准号:
0801129 - 财政年份:2008
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
IHP Workshop on Groupoids in Operator Algebras and Noncommutative Geometry
IHP 算子代数和非交换几何中的群形研讨会
- 批准号:
0654146 - 财政年份:2007
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
IHP Workshop on "Higher Structures in Geometry and Physics"
IHP“几何和物理高级结构”研讨会
- 批准号:
0633440 - 财政年份:2006
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
- 批准号:
0406368 - 财政年份:2004
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
相似海外基金
Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
- 批准号:
2303586 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
- 批准号:
RGPIN-2021-03834 - 财政年份:2022
- 资助金额:
$ 12.74万 - 项目类别:
Discovery Grants Program - Individual
Study of generalized quantum groups by using Weyl groupoids
利用Weyl群形研究广义量子群
- 批准号:
22K03225 - 财政年份:2022
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Groupoids and Geometric Quantization
群曲面和几何量化
- 批准号:
RGPIN-2015-05833 - 财政年份:2021
- 资助金额:
$ 12.74万 - 项目类别:
Discovery Grants Program - Individual
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
- 批准号:
DGECR-2021-00372 - 财政年份:2021
- 资助金额:
$ 12.74万 - 项目类别:
Discovery Launch Supplement
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
- 批准号:
RGPIN-2021-03834 - 财政年份:2021
- 资助金额:
$ 12.74万 - 项目类别:
Discovery Grants Program - Individual
Nahm equations and hyperkähler structures on symplectic groupoids
辛群曲面上的纳姆方程和超克勒结构
- 批准号:
532253-2019 - 财政年份:2020
- 资助金额:
$ 12.74万 - 项目类别:
Postdoctoral Fellowships
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
- 批准号:
2003223 - 财政年份:2020
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
Dynamics, Groupoids, and C*-Algebras
动力学、群群和 C* 代数
- 批准号:
2000057 - 财政年份:2020
- 资助金额:
$ 12.74万 - 项目类别:
Standard Grant
A study of étale groupoids and groupoid C*-algebras
一项研究
- 批准号:
20J10088 - 财政年份:2020
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows