Biomolecular Materials: Structure, Phase Behavior, & Interactions
生物分子材料:结构、相行为、
基本信息
- 批准号:1101900
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ID: MPS/DMR/BMAT(7623) 1101900 PI: Safinya, Cyrus ORG: UC Santa BarbaraTitle: Biomolecular Materials: Structure, Phase Behavior, and InteractionsINTELLECTUAL MERIT: The aim of this proposal is to develop a fundamental understanding of the intermolecular forces and resulting structures in assemblies of filamentous proteins (in particular, neurofilaments and microtubules) derived from the cytoskeleton of neuronal dendrites and axons (the extensions used by neurons to receive and send signals to neighboring neurons). The proposal combines state-of-the-art synchrotron x-ray-scattering, x-ray-osmotic pressure, and optical and electron microscopy techniques used by the PI, and in parallel, closely related modern modeling by the co-PI. Experiments are proposed to study forces between microtubules mediated by microtubule-associated-protein (MAP) tau, an abundant unstructured biological polymer containing anionic and cationic amino acid residues, which binds to (via electrostatic interactions) and stabilizes microtubules in axons. While the precise role of MAP-tau in modulating interactions between microtubules is unclear, it is well established that aberrant interactions between tau and microtubules (e.g., due to tau mutations or over-phosphorylation) invariably lead to collapse of the cytoskeleton and neurodegeneration. Experiments are proposed to understand the structures and inter-filamentous interactions, mediated by charged neurofilament-sidearms and MAP-tau, in systems which closely mimic the distinct local environments of axons and dendrites (i.e., with different composition of the three neurofilament-sidearms and the presence or absence of MAP-tau). The specific aims of this proposal are (1) to elucidate the role of biological and synthetic multivalent counter-ions in suppressing the repulsive barrier, which prevents MAP-tau-mediated short-range attractions between microtubules, (2) to unravel the structure-function properties of MAP-tau by discovering how domain deletions (via truncated tau constructs) alter tau-mediated microtubule assembly, (3) to study the intermolecular interactions and resulting structures between neuronal cytoskeletal filaments in co-assembling mixtures of microtubules and neurofilaments, and (4) to develop quantitative models of forces between two opposing polyampholyte brushes (mimicking the structures of neurofilaments and microtubules) to closely capture the biophysics of interactions between microtubules mediated by MAP-tau, between different neurofilament-sidearms, and between neurofilament-sidearms and MAP-tau. Aside from enhancing our knowledge of the nerve cell cytoskeleton, the proposed research will further our understanding of charged-polymeric systems, a very important field of soft and biological matter, where much remains to be understood.BROADER IMPACTS: The proposed studies will lead to a comprehensive understanding of how nature makes use of competing intermolecular forces (e.g., attractions at short distances and repulsions at longer distances) to assemble distinct filamentous structures within the long extensions of nerve cells to impart critical functionalities such as mechanical stability and facilitated transport of materials. The understanding gleaned from the studies (e.g., about the specific chemical moieties responsible for inter-filament interactions) will enable the broader scientific community to employ a rational approach in the design of synthetic building-block mimics for constructing hierarchical structures arising from the built-in functionality at the molecular level that control intermolecular interactions. The biomimetic structures, in turn, are expected to have important technological applications, for example, as templates for miniaturized materials with applications in nano-biotechnology. The biomaterials research effort of the PIs is multidisciplinary and educates and trains undergraduate and graduate students and postdoctoral researchers in modern methodologies required to address important problems at the interface between physics, chemistry, engineering, and biology. The acquired interdisciplinary skills prepare the trainees for careers in academe, national laboratories, and industry. The principal investigators actively participate in UCSB Outreach Programs with the community colleges and with colleges and universities outside of Santa Barbara. The programs include the Internships in Nanosystems Science and Engineering Technology, California Alliance for Minority Participation, Research Internship in Science and Engineering, Cooperative International Science and Engineering Internships, and the Research Experience for Teachers. This activity allows the PIs to train a broad spectrum of students and teachers in multidisciplinary methods of science and engineering.
ID:MPS/DMR/BMAT(7623)1101900 主要研究者:萨芬亚,赛勒斯ORG:加州大学圣巴巴拉分校标题:生物分子材料:结构、相行为和相互作用智力优势:本提案的目的是对来自神经元树突和轴突(神经元用来接收和发送信号到邻近神经元的延伸)细胞骨架的丝状蛋白(特别是神经丝和微管)组装中的分子间力和所产生的结构有一个基本的理解。 该提案结合了PI使用的最先进的同步加速器X射线散射,X射线渗透压,光学和电子显微镜技术,以及并行的co-PI密切相关的现代建模。 提出实验来研究微管相关蛋白(MAP)tau介导的微管之间的力,微管相关蛋白(MAP)tau是一种含有阴离子和阳离子氨基酸残基的丰富的非结构化生物聚合物,其结合(通过静电相互作用)并稳定轴突中的微管。 虽然MAP-tau在调节微管之间的相互作用中的确切作用尚不清楚,但已经确定tau和微管之间的异常相互作用(例如,由于tau突变或过度磷酸化)总是导致细胞骨架的崩溃和神经变性。 提出了实验来理解在紧密模拟轴突和树突的不同局部环境的系统中由带电的神经毒性侧臂和MAP-tau介导的结构和丝状体间相互作用(即,具有不同的三种神经毒性侧臂的组成和MAP-tau的存在或不存在)。 该提议的具体目的是(1)阐明生物和合成的多价反离子在抑制排斥屏障中的作用,该排斥屏障阻止MAP-tau介导的微管之间的短程吸引,(2)通过发现结构域缺失如何解释MAP-tau的结构-功能特性,(通过截短的tau构建体)改变tau介导的微管组装,(3)研究神经元细胞骨架丝之间的分子间相互作用及其结构。组装微管和神经丝的混合物,以及(4)开发两个相对的两性聚电解质刷之间的力的定量模型(模拟神经丝和微管的结构)来密切捕捉由MAP-tau介导的微管之间、不同神经递质侧臂之间、和MAP-tau之间的关系。 除了增强我们对神经细胞细胞骨架的了解外,拟议的研究将进一步加深我们对带电聚合物系统的理解,这是软物质和生物物质的一个非常重要的领域,其中还有许多有待了解。更广泛的影响:拟议的研究将导致对自然如何利用竞争分子间力(例如,短距离的吸引和长距离的排斥),以在神经细胞的长延伸内组装不同的丝状结构,从而赋予关键的功能,例如机械稳定性和促进材料的运输。 从研究中收集到的理解(例如,关于负责丝间相互作用的特定化学部分)将使更广泛的科学界能够在设计合成的积木模拟物中采用合理的方法,以构建由控制分子间相互作用的分子水平上的内在官能度产生的分级结构。 仿生结构,反过来,预计有重要的技术应用,例如,作为模板的微型材料与纳米生物技术的应用。 PI的生物材料研究工作是多学科的,教育和培训本科生和研究生以及博士后研究人员,以解决物理,化学,工程和生物学之间接口的重要问题所需的现代方法。 所获得的跨学科技能为学员在国家实验室,国家实验室和工业中的职业生涯做好准备。 主要研究人员积极参与UCSB与社区学院和圣巴巴拉以外的学院和大学的外联计划。 这些项目包括纳米系统科学与工程技术实习、加州少数民族参与联盟、科学与工程研究实习、国际合作科学与工程实习以及教师研究经验。 这项活动使PI能够对广泛的学生和教师进行科学和工程多学科方法的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus Safinya其他文献
Interactions between Neurofilament SideArms : A Coarse-grained Molecular Dynamics Simulation Study
神经丝侧臂之间的相互作用:粗粒度分子动力学模拟研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shinji Matsushita;Cyrus Safinya - 通讯作者:
Cyrus Safinya
Mechanical Behaviors of Neurofilament Sidearms : A Coarse-grained Molecular Dynamics Simulation Study
神经丝侧臂的机械行为:粗粒度分子动力学模拟研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shinji Matsushita;Cyrus Safinya - 通讯作者:
Cyrus Safinya
Cyrus Safinya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus Safinya', 18)}}的其他基金
Biomolecular Materials: Structure, Phase behavior, and Interactions
生物分子材料:结构、相行为和相互作用
- 批准号:
1807327 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Biomolecular Materials: Structure, Phase Behavior, & Interactions
生物分子材料:结构、相行为、
- 批准号:
1401784 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Biomolecular Materials: Structure, Phase Behavior, & Interactions
生物分子材料:结构、相行为、
- 批准号:
0803103 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
MRI: Development of an Ultra-High Resolution Small Angle X-Ray Scattering Instrument for Characterizing Supramolecular Assemblies
MRI:开发用于表征超分子组装体的超高分辨率小角度 X 射线散射仪器
- 批准号:
0619171 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Biomolecular Materials: Structure, Phase Behavior, & Interactions
生物分子材料:结构、相行为、
- 批准号:
0503347 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Biomolecular Materials: Structure, Phase Behavior, and Interactions
生物分子材料:结构、相行为和相互作用
- 批准号:
0203755 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Development of a Short Wavelength Spectroscopic X-ray Microscope for Advanced Materials Research and Student Training
开发用于先进材料研究和学生培训的短波长光谱 X 射线显微镜
- 批准号:
0076357 - 财政年份:2000
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Biomolecular Materials: Structure, Phase Behavior and Interactions
生物分子材料:结构、相行为和相互作用
- 批准号:
9972246 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Acquisition of Optical Imaging Instrumentation for Biomolecular and Complex Materials Characterization
获取用于生物分子和复杂材料表征的光学成像仪器
- 批准号:
9724254 - 财政年份:1997
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Biomolecular Materials: Structure, Phase Behavior, and Interaction
生物分子材料:结构、相行为和相互作用
- 批准号:
9624091 - 财政年份:1996
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
- 批准号:
LE240100036 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Mechanism and Structure of Functional Materials by Solid-state NMR
通过固态核磁共振研究功能材料的机理和结构
- 批准号:
EP/X041751/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Challenging application of wood materials to masonry structure in Asian developing countries for fundamental seismic performance improvement
亚洲发展中国家木质材料在砖石结构中的应用具有挑战性,以提高基本的抗震性能
- 批准号:
23KK0085 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of new INVAR functional materials by clarification of local structure-physical property correlation
通过阐明局部结构-物理性能相关性开发新型INVAR功能材料
- 批准号:
23KK0088 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)