Photonic devices based on fluorescent proteins
基于荧光蛋白的光子器件
基本信息
- 批准号:1101947
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since Theodore Maiman demonstrated the first laser a half century ago, stimulated emission and lasing have made a tremendous impact on modern science and technology. Although lasers and the coherent light they emit are omnipresent today, lasing has remained a man-made phenomenon. Generation of laser light has so far relied on artificial or engineered optical gain materials, such as doped crystals, semiconductors, synthetic dyes, and purified gases; biological materials and living organisms have not been explored as gain materials for lasers. This project introduces fluorescent proteins as a new optical gain material. The proposed research will investigate the optical amplification characteristics of biologically produced, biocompatible and biodegradable fluorescent proteins that have high quantum yield at various wavelengths across the entire visible spectrum. The fluorescent proteins offer unique properties not shared by any existing gain materials. For example, they can be expressed as functional transgene in a wide variety of organism. Intellectual merit of this project is harnessing these properties of fluorescent proteins to demonstrate novel photonic device concepts, including protein lasers in solutions and in condensed-state forms, as well as biological lasers based on single cells expressing fluorescent proteins will be explored. Successful completion of the proposed research will improve our ability to control and optimize the stimulated emission properties of fluorescent proteins and demonstrate miniature lasers and amplifiers built on the biological platform. Furthermore, it is expected to provide insights into a range of novel protein-based devices and technologies for practical applications. For example, lasing within the tissues and inside the cells may offer new possibilities of nonlinear deep imaging and intracellular sensing for bioengineering and medical diagnosis. The ability to generate laser light in vivo may enable new approaches in light-controlled therapy and drug activation. Broader impacts of this project include the opportunity to educate and train graduate students and postdoctoral fellows in the highly vibrant and multidisciplinary environment at the Wellman Center for Photomedicine. Undergraduate students enrolled in the Wellman-HST Summer Institute for Biomedical Optics and other summer internship programs will be invited to participate in this project. The researchers and students will learn how to work across boundaries between disciplines through creativity and inspiration. In the long run, stimulated emission from fluorescent proteins has the potential to improve human health by enabling innovative approaches to disease diagnosis and light-based treatments.
自从半个世纪前西奥多·梅曼展示了第一台激光器以来,受激发射和激光对现代科学技术产生了巨大的影响。虽然激光及其发出的相干光如今无处不在,但激光仍然是一种人造现象。到目前为止,激光的产生依赖于人工或工程光学增益材料,如掺杂晶体、半导体、合成染料和净化气体;生物材料和活生物体尚未被探索作为激光增益材料。本项目介绍了荧光蛋白作为一种新型光学增益材料。该研究将研究在整个可见光谱的不同波长具有高量子产率的生物生产,生物相容性和可生物降解的荧光蛋白的光学放大特性。荧光蛋白具有任何现有增益材料所不具有的独特特性。例如,它们可以在多种生物体中作为功能性转基因表达。该项目的智力价值在于利用荧光蛋白的这些特性来展示新的光子器件概念,包括溶液和凝聚态形式的蛋白质激光器,以及基于表达荧光蛋白的单细胞的生物激光器。本研究的成功完成将提高我们控制和优化荧光蛋白受激发射特性的能力,并展示建立在生物平台上的微型激光器和放大器。此外,它有望为实际应用提供一系列新的基于蛋白质的设备和技术的见解。例如,组织内和细胞内的激光可能为生物工程和医学诊断提供非线性深度成像和细胞内传感的新可能性。在体内产生激光的能力可能使光控治疗和药物激活的新方法成为可能。该项目更广泛的影响包括有机会在威尔曼光电医学中心充满活力和多学科的环境中教育和培训研究生和博士后。本项目将邀请参加Wellman-HST生物医学光学暑期研究所和其他暑期实习项目的本科生参加。研究人员和学生将学习如何通过创造力和灵感跨越学科之间的界限。从长远来看,荧光蛋白的受激辐射有可能通过实现疾病诊断和基于光的治疗的创新方法来改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seok (Andy) Yun其他文献
Seok (Andy) Yun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seok (Andy) Yun', 18)}}的其他基金
REU Site:Wellman-HST Summer Institute for Biomedical Optics
REU 网站:Wellman-HST 生物医学光学夏季研究所
- 批准号:
1852430 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Mechanical Mapping of Neural Stem Cell Differentiation
神经干细胞分化的机械图谱
- 批准号:
1562863 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
REU Site: Wellman-HST Summer Institute for Biomedical Optics
REU 网站:Wellman-HST 生物医学光学夏季研究所
- 批准号:
1358296 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Imaging the elastic properties of cells in 3D environment
在 3D 环境中对细胞的弹性特性进行成像
- 批准号:
1264356 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Biomechanical Microscopy Using Brillouin Scattering
使用布里渊散射的生物力学显微镜
- 批准号:
0853773 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Sliding Frequency Modelocking of Swept Laser
扫频激光滑频锁模
- 批准号:
0801412 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
- 批准号:
2240414 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Towards quantum photonic devices based on high-dimensional optical modes
基于高维光学模式的量子光子器件
- 批准号:
RGPIN-2022-05428 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Liquid-Phase Processing of Fiber-Based Electronic and Photonic Materials and Devices
职业:基于纤维的电子和光子材料及器件的液相处理
- 批准号:
2143467 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices
用于可扩展且高效的硅基光子器件的应变锗光子晶体膜
- 批准号:
EP/V048732/1 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Developing a process development kit for quantum dot based compound semiconductor photonic devices
开发基于量子点的化合物半导体光子器件的工艺开发套件
- 批准号:
2601713 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Studentship
Structural optimization for design of high performance photonic devices based on bi-directional beam propagation method.
基于双向光束传播方法的高性能光子器件设计结构优化
- 批准号:
20K22408 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
State-of-the-art nanofabrication processes for manufacturing integrated photonic devices based on silicon nitride
用于制造基于氮化硅的集成光子器件的最先进的纳米加工工艺
- 批准号:
530034-2018 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Collaborative Research and Development Grants
Group-IV semiconductor based photonic waveguide devices for versatile pulsed data processing
基于 IV 族半导体的光子波导器件,用于多功能脉冲数据处理
- 批准号:
20F20374 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel photonic devices based on the concept of space-time duality
基于时空二象性概念的新型光子器件
- 批准号:
1933328 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
- 批准号:
RGPIN-2015-05344 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




