ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING

应用科学中某些非线性系统的动力学:输运、运动和混合

基本信息

  • 批准号:
    1109397
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the fundamental challenges of modeling, analysis and computation for nonlinear models in applied sciences involving hyperbolic balance laws, kinetic models, and mixtures of simple and complex fluids. The project has two primary components: (a) The investigation of complex flows with emphasis on fluid-particle interaction models and polymeric fluids. Issues to be addressed include large-data existence theory for physical systems, issues of stability and asymptotic analysis, hydrodynamic and diffusive limits as well as aspects of regularity. (b) The investigation of multidimensional systems with focus on hyperbolic systems of conservation laws and models of compressible fluids with dispersive effects. Issues to be addressed include large-data well-posedness theory for physical systems, the investigation of the structure of solutions as well as the analysis of singular limits.Advances in this interdisciplinary research will rely substantially on the development of new analytical techniques in nonlinear partial differential equations. Analytical and numerical methods in this field have developed together; analytical understanding contributes to the construction of accurate and efficient numerical schemes, while numerical experiments often lead the theoretical analysis. Progress in this research program will contribute to the successful investigation of a wide variety of important physical systems arising in biology and materials science as well as to the design of high performance computational algorithms. Furthermore, this project will contribute to the development of the scientific workforce by providing mentoring and advanced training for young researchers and by organizing a framework for interdisciplinary interactions with researchers from related fields.
本项目关注应用科学中非线性模型的建模、分析和计算的基本挑战,包括双曲平衡定律、动力学模型以及简单和复杂流体的混合物。该项目有两个主要组成部分:(A)复杂流动的研究,重点是流体-颗粒相互作用模型和聚合物流体。要解决的问题包括物理系统的大数据存在理论、稳定性和渐近分析问题、流体动力学和扩散极限以及规律性方面。(B)多维系统的研究,重点是具有色散效应的双曲型守恒律系统和可压缩流体模型。需要解决的问题包括物理系统的大数据适定性理论、解的结构研究以及奇异极限的分析。这一跨学科研究的进展将在很大程度上依赖于非线性偏微分方程新分析技术的发展。这一领域的解析方法和数值方法是共同发展的,理解解析有助于构造准确有效的数值格式,而数值实验往往引领理论分析。这一研究计划的进展将有助于成功研究生物学和材料科学中出现的各种重要物理系统,以及设计高性能计算算法。此外,该项目将通过为年轻研究人员提供指导和高级培训,并通过组织与相关领域的研究人员进行跨学科互动的框架,促进科学队伍的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantina Trivisa其他文献

On the Motion of a Viscous Compressible Radiative-Reacting Gas
  • DOI:
    10.1007/s00220-006-1534-7
  • 发表时间:
    2006-03-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Donatella Donatelli;Konstantina Trivisa
  • 通讯作者:
    Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions

Konstantina Trivisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantina Trivisa', 18)}}的其他基金

RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
  • 批准号:
    1614964
  • 财政年份:
    2016
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    0807815
  • 财政年份:
    2008
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
  • 批准号:
    0405853
  • 财政年份:
    2004
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
  • 批准号:
    0239063
  • 财政年份:
    2003
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0196157
  • 财政年份:
    2000
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0072496
  • 财政年份:
    2000
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant

相似海外基金

Why certain viruses don't get along in mosquitoes. The molecular mechanism.
为什么某些病毒不能在蚊子体内相处。
  • 批准号:
    FT230100465
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    ARC Future Fellowships
Development of a new method to visualize RNAs with certain modifications and its utilization in analyses of intra-cellular dynamics of tRNAs.
开发一种新方法来可视化具有某些修饰的 RNA,并将其用于分析 tRNA 的细胞内动态。
  • 批准号:
    23K18100
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A study on how certain leveraging activityies by a digital platform should be regulated.
关于如何监管​​数字平台的某些杠杆活动的研究。
  • 批准号:
    23K01122
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of time-response of control system with a certain controller using one-shot data
使用一次性数据对具有特定控制器的控制系统的时间响应进行数据驱动预测
  • 批准号:
    22K04174
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
certain.1 - climate and environment risk through transparent analytics and intelligent networks phase 1
certain.1 - 通过透明分析和智能网络第一阶段的气候和环境风险
  • 批准号:
    10030670
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Small Business Research Initiative
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Discovery Grants Program - Individual
Subgroup Structure of certain Exceptional Finite Simple Groups
某些例外有限简单群的子群结构
  • 批准号:
    2617662
  • 财政年份:
    2021
  • 资助金额:
    $ 14万
  • 项目类别:
    Studentship
The Behaviour of Certain Combinatorial Sequences
某些组合序列的行为
  • 批准号:
    561393-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 14万
  • 项目类别:
    University Undergraduate Student Research Awards
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2021
  • 资助金额:
    $ 14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了