On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences

应用科学中某些非线性系统的动力学、结构和稳定性

基本信息

  • 批准号:
    0807815
  • 负责人:
  • 金额:
    $ 36.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This research project investigates problems on the interface between continuum physics and applied partial differential equations, with emphasis on analysis of physically relevant solutions of the nonlinear systems that arise in the description of fluid flow and continuum mechanics. The project has three primary components: (a) The investigation of hydrodynamic models for compressible and incompressible fluids. Issues to be addressed include large-data existence theory for physical systems, issues of stability and asymptotic analysis, and singular limits in hydrodynamics. (b) The analysis of material structures with focus on fluid-solid interaction problems as well as fluid-particle models arising in biology and environmental sciences. (c) The investigation of inviscid models with emphasis on hyperbolic balance laws.The enormous range of spatial and temporal scales that arise in the description of compressible fluids, nonlinear materials, multi-phase flows, astrophysical systems, and biological systems makes analysis of the associated models challenging. Use of explicit integration or even numerical approximation for generic solutions to the governing equations is impractical for the majority of applications. This research explores alternative approaches that will contribute to the further investigation of a wide variety of important physical systems and to the design of high performance computational algorithms. One of the goals of this project is to contribute to the development of the scientific workforce by providing mentoring and advanced training for young researchers and by organizing a framework for interdisciplinary interactions with researchers from related fields.
本研究项目研究连续介质物理与应用偏微分方程之间的接口问题,重点是分析流体流动和连续介质力学描述中出现的非线性系统的物理相关解决方案。 该项目有三个主要组成部分:(a)研究可压缩和不可压缩流体的流体动力学模型。 要解决的问题包括物理系统的大数据存在理论,稳定性和渐近分析问题,以及流体力学中的奇异极限。 (b)材料结构的分析,重点是流体-固体相互作用问题以及生物学和环境科学中出现的流体-颗粒模型。 (c)以双曲线平衡定律为重点的无粘性模型研究。在描述可压缩流体、非线性材料、多相流、天体物理系统和生物系统时,出现了巨大的空间和时间尺度范围,这使得相关模型的分析具有挑战性。 使用显式积分或甚至数值近似的通用解决方案的控制方程是不切实际的大多数应用。 这项研究探讨了替代方法,这将有助于进一步调查各种重要的物理系统和高性能计算算法的设计。 该项目的目标之一是通过为年轻研究人员提供指导和高级培训,并通过组织一个与相关领域研究人员进行跨学科互动的框架,为科学工作者队伍的发展做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantina Trivisa其他文献

On the Motion of a Viscous Compressible Radiative-Reacting Gas
  • DOI:
    10.1007/s00220-006-1534-7
  • 发表时间:
    2006-03-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Donatella Donatelli;Konstantina Trivisa
  • 通讯作者:
    Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions

Konstantina Trivisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantina Trivisa', 18)}}的其他基金

RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
  • 批准号:
    1614964
  • 财政年份:
    2016
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING
应用科学中某些非线性系统的动力学:输运、运动和混合
  • 批准号:
    1109397
  • 财政年份:
    2011
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
  • 批准号:
    0405853
  • 财政年份:
    2004
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
  • 批准号:
    0239063
  • 财政年份:
    2003
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0196157
  • 财政年份:
    2000
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0072496
  • 财政年份:
    2000
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
  • 批准号:
    2223407
  • 财政年份:
    2022
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
  • 批准号:
    2102978
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
Replication resolved in the living cell: Replisome dynamics, stability and structure.
活细胞中的复制已解决:复制体动力学、稳定性和结构。
  • 批准号:
    10158530
  • 财政年份:
    2018
  • 资助金额:
    $ 36.58万
  • 项目类别:
Low Resonant Frequency Energy Scavenging Based on Bi-Stability Structure Dynamics
基于双稳态结构动力学的低共振频率能量清除
  • 批准号:
    1408005
  • 财政年份:
    2014
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Standard Grant
RUI: Interplay between epigenetic methylation and oxidative damage: effects on DNA stability, structure and dynamics.
RUI:表观遗传甲基化与氧化损伤之间的相互作用:对 DNA 稳定性、结构和动力学的影响。
  • 批准号:
    1244641
  • 财政年份:
    2013
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
Kinetic Structure, Stability, and Dynamics of Current Sheets in Magnetospheric Plasmas
磁层等离子体电流片的动力学结构、稳定性和动力学
  • 批准号:
    1102527
  • 财政年份:
    2011
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
Stability and nonlinear structure for the nonlinear partial differential equations of gas dynamics.
气体动力学非线性偏微分方程的稳定性和非线性结构。
  • 批准号:
    21740111
  • 财政年份:
    2009
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Probing the Impact of Evolutionary Divergence on Structure, Function, Stability and Dynamics of Cytochrome b5
探讨进化分歧对细胞色素 b5 的结构、功能、稳定性和动力学的影响
  • 批准号:
    0446326
  • 财政年份:
    2005
  • 资助金额:
    $ 36.58万
  • 项目类别:
    Continuing Grant
Structure, stability, and dynamics of splice variants
剪接变体的结构、稳定性和动力学
  • 批准号:
    6689853
  • 财政年份:
    2003
  • 资助金额:
    $ 36.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了