PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
基本信息
- 批准号:0239063
- 负责人:
- 金额:$ 48.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: PECASE: SYSTEMS OF CONSERVATION LAWS AND RELATEDMODELS IN APPLIED SCIENCES - MATH AWARENESS AND OUTREACHInstitution: University of Maryland College ParkThe research program of the investigator lies on the interface between continuum physics and applied partial differential equations, with emphasis on nonlinear systems of conservation laws. These quasilinear systems in divergence form govern a broad spectrum of physical phenomena in compressible fluid dynamics, nonlinear materials science, particle physics, semiconductors, combustion, multi-phase flows, astrophysics, and other applied areas.In recent years, major progress has been made in both the theoretical and the numerical aspects of this field. The main objective of this investigation is to build a bridge between the most recent developments in the general mathematical theory and significant areas of application that have developed in the last few years. The main focus of this program will be given to significant and, until recently, unexplored areas of research, including: hyperbolic systems of conservation laws with large initial data; multi-dimensional systems in nonlinear elasticity, fluid dynamics, and combustion theory; vanishing viscosity solutions to models of compressible flows; stability of boundary layers for realistic models of compressible fluids; and analysis of numerical schemes for hyperbolic conservation laws.Advances in this interdisciplinary research will rely substantially on the development of new analytical techniques in nonlinear partial differential equations. Analytical and numerical methods in this field have developed together; analytical understanding contributes to the construction of accurate and efficient numerical schemes, while numerical experiments often lead the theoretical analysis. Progress in this research program will contribute (a) to the successful investigation of a wide variety of important physical systems modeled by conservation laws and (b) to the design of high performance computational algorithms.The investigator integrates into her work educational activities that demonstrate the importance of applied mathematics in a broad spectrum of sciences. Special emphasis is given to applications in materials sciences, biology, finance, and cutting edge technologies. The planned educational activities include programs for high school students, undergraduates, and graduate students. The investigator works to increase the diversity in the mathematical sciences by encouraging under-represented groups to study applied mathematics and choose it as a career.This project was originally funded as a CAREER award, and was converted to a Presidential Early Career Award for Engineers and Scientists (PECASE) award in September 2004.
提案标题:PECASE:守恒定律系统和相关模型应用科学-数学意识和OUTREACH研究所:马里兰大学帕克研究人员的研究项目位于连续介质物理和应用偏微分方程组之间的界面上,重点是非线性守恒定律系统。这些散度形式的拟线性系统控制着可压缩流体动力学、非线性材料科学、粒子物理、半导体、燃烧、多相流、天体物理等应用领域的广泛物理现象。近年来,该领域的理论和数值方面都取得了重大进展。这项调查的主要目的是在一般数学理论的最新发展和过去几年发展的重要应用领域之间建立一座桥梁。该计划的主要重点将放在重要的和直到最近仍未探索的研究领域,包括:具有大量初始数据的双曲型守恒律系统;非线性弹性、流体动力学和燃烧理论中的多维系统;可压缩流动模型的零粘性解;可压缩流体的实际模型的边界层稳定性;以及双曲型守恒律的数值格式分析。这一跨学科研究的进展将在很大程度上依赖于非线性偏微分方程新分析技术的发展。这一领域的解析方法和数值方法是共同发展的,理解解析有助于构造准确有效的数值格式,而数值实验往往引领理论分析。这一研究计划的进展将有助于(A)成功地研究由守恒定律建模的各种重要物理系统,以及(B)设计高性能计算算法。研究人员将证明应用数学在广泛科学中的重要性的教育活动融入到她的工作中。特别强调在材料科学、生物、金融和尖端技术方面的应用。计划的教育活动包括面向高中生、本科生和研究生的项目。这位研究人员致力于通过鼓励代表不足的群体学习应用数学并将其作为职业来增加数学科学的多样性。该项目最初是作为职业奖而资助的,并于2004年9月转变为总统工程师和科学家早期职业奖(PECASE)奖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantina Trivisa其他文献
On the Motion of a Viscous Compressible Radiative-Reacting Gas
- DOI:
10.1007/s00220-006-1534-7 - 发表时间:
2006-03-09 - 期刊:
- 影响因子:2.600
- 作者:
Donatella Donatelli;Konstantina Trivisa - 通讯作者:
Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions
- DOI:
10.1007/s00030-017-0475-5 - 发表时间:
2017-08-05 - 期刊:
- 影响因子:1.200
- 作者:
Donatella Donatelli;Konstantina Trivisa - 通讯作者:
Konstantina Trivisa
Konstantina Trivisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantina Trivisa', 18)}}的其他基金
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
- 批准号:
2231533 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
- 批准号:
2008568 - 财政年份:2020
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
- 批准号:
1614964 - 财政年份:2016
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
- 批准号:
1211519 - 财政年份:2012
- 资助金额:
$ 48.21万 - 项目类别:
Continuing Grant
ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING
应用科学中某些非线性系统的动力学:输运、运动和混合
- 批准号:
1109397 - 财政年份:2011
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
- 批准号:
0807815 - 财政年份:2008
- 资助金额:
$ 48.21万 - 项目类别:
Continuing Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
- 批准号:
0405853 - 财政年份:2004
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
- 批准号:
0196157 - 财政年份:2000
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
- 批准号:
0072496 - 财政年份:2000
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
IRES Track II: Systems-based transdisciplinary approaches to coral reef science and conservation
IRES Track II:基于系统的跨学科方法进行珊瑚礁科学和保护
- 批准号:
2328190 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
Innovation of ecosystems conservation/market-oriented local livelihood systems and its dissemination in Zanzibar, Tanzania
生态系统保护/以市场为导向的当地生计系统的创新及其在坦桑尼亚桑给巴尔的推广
- 批准号:
23KK0018 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
Systems approach for establishing climate smart aquaculture to balance biodiversity conservation and food security in coral reef ecosystems
建立气候智能型水产养殖以平衡珊瑚礁生态系统生物多样性保护和粮食安全的系统方法
- 批准号:
2889609 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Studentship
Improved design and operations of building water systems to reduce health risks caused by water & energy conservation and extended shutdowns
改进建筑供水系统的设计和运行,以减少水造成的健康风险
- 批准号:
RGPIN-2021-04341 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Discovery Grants Program - Individual
Utilizing Canadian agricultural systems to support native pollinator conservation
利用加拿大农业系统支持本地传粉媒介保护
- 批准号:
547578-2020 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Postgraduate Scholarships - Doctoral
Study for pattern formations and dynamics arising in reaction-diffusion systems with conservation law
用守恒定律研究反应扩散系统中的模式形成和动力学
- 批准号:
22K03444 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conservation laws in microscopic wetting: from equilbrium systems to nonequilibrium systems
微观润湿守恒定律:从平衡系统到非平衡系统
- 批准号:
22H01400 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-Order Invariant Domain Preserving Approximations of Multiphysics Systems of Conservation Equations
守恒方程多物理场系统的高阶不变域保近似
- 批准号:
2110868 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
Standard Grant
Improved design and operations of building water systems to reduce health risks caused by water & energy conservation and extended shutdowns
改进建筑供水系统的设计和运行,以减少水造成的健康风险
- 批准号:
RGPIN-2021-04341 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
Discovery Grants Program - Individual