Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications

守恒定律的双曲系统 - 粘性守恒定律 - 应用

基本信息

  • 批准号:
    0196157
  • 负责人:
  • 金额:
    $ 7.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantina Trivisa其他文献

On the Motion of a Viscous Compressible Radiative-Reacting Gas
  • DOI:
    10.1007/s00220-006-1534-7
  • 发表时间:
    2006-03-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Donatella Donatelli;Konstantina Trivisa
  • 通讯作者:
    Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions

Konstantina Trivisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantina Trivisa', 18)}}的其他基金

RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
  • 批准号:
    1614964
  • 财政年份:
    2016
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING
应用科学中某些非线性系统的动力学:输运、运动和混合
  • 批准号:
    1109397
  • 财政年份:
    2011
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    0807815
  • 财政年份:
    2008
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
  • 批准号:
    0405853
  • 财政年份:
    2004
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
  • 批准号:
    0239063
  • 财政年份:
    2003
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0072496
  • 财政年份:
    2000
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
  • 批准号:
    2306852
  • 财政年份:
    2023
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
  • 批准号:
    2008504
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Systems of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程组
  • 批准号:
    1715012
  • 财政年份:
    2017
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
  • 批准号:
    23540250
  • 财政年份:
    2011
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Entropy solutions for nonlinear degenerate parabolic equations and hyperbolic systems of conservation laws
非线性简并抛物线方程和守恒定律双曲系统的熵解
  • 批准号:
    22540235
  • 财政年份:
    2010
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Divergence-measure fields and the structure of solutions of systems of hyperbolic conservation laws
双曲守恒定律系统的散度测度场和解的结构
  • 批准号:
    0901245
  • 财政年份:
    2009
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws and Applications
守恒定律的双曲系统及其应用
  • 批准号:
    0708137
  • 财政年份:
    2007
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws and Applications
守恒定律的双曲系统及其应用
  • 批准号:
    0803463
  • 财政年份:
    2007
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Standard Grant
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
  • 批准号:
    249488-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
  • 批准号:
    249488-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了