SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response

SoCS:协作研究:社交媒体增强应急响应中的组织意识

基本信息

  • 批准号:
    1111118
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative research leverages expertise of researchers at Wright State University (IIS-1111182) and Ohio State University (IIS-1111118). Online social networks and always-connected mobile devices have created an immense opportunity that empowers citizens and organizations to communicate and coordinate effectively in the wake of critical events. Specifically, there have been many isolated examples of using Twitter to provide timely and situational information about emergencies to relief organizations, and to conduct ad-hoc coordination. However, there are few attempts that try to understand the full ramifications of using social networks in a more concerted manner for effective organizational sensemaking. This project aims to conduct multidisciplinary research involving computer and social scientists fill this gap.This project seeks to leverage Twitter posts (tweets) as the primary source of citizen inputs and couple relevant content and network information along with microworld simulations involving human role players to measure effectiveness of various organized sensemaking strategies. To arrive at meaningful summaries of citizen input, tweet content is analyzed using a semantic content analysis by combining natural language techniques that are suitably fused with existing knowledge bases (GeoNames, Wikipedia). Content analysis is further enhanced by innovatively combining it with the dynamic analysis of the twitter network to realize concise and trustworthy information nuggets of potential interest to organizations and citizens. The resulting summaries will be fed to a suitably designed microworld simulation involving human actors to derive realistic settings for modeling disaster situations and typical organizational structures.This project is expected to have a significant impact in the specific context of disaster and emergency response. However, elements of this research are expected to have much wider utility, for example in the domains of e-commerce, and social reform. From a computational perspective, this project introduces the novel paradigm of people-content-network analysis whose application is not just limited to organized sensemaking. For social scientists, it provides a platform that can be used to assess relative efficacy of various organizational structures using microworld simulations and is expected to provide new insights into the types of social network structures (mix of symmetric and asymmetric) that might be better suitable to propagate information in emergent situations. From an educational standpoint, the majority of funds will be used to train the next generation of interdisciplinary researchers drawn from the computational and social sciences. Research activities will also be integrated with graduate course work. Participation of underrepresented groups will be encouraged. Datasets and software developed as part of this project will be made available to the broader research community via the project page (http://knoesis.org/research/semspc/projects/socs).
这项合作研究利用了莱特州立大学(IIS-1111182)和俄亥俄州立大学(IIS-1111118)研究人员的专业知识。在线社交网络和始终连接的移动设备创造了一个巨大的机会,使公民和组织能够在重大事件发生后进行有效的沟通和协调。具体地说,使用Twitter向救援组织提供有关紧急情况的及时和情势信息并进行临时协调的例子很多。然而,很少有人试图理解以更协调的方式使用社交网络来有效地制造组织轰动效应的全部后果。该项目旨在开展涉及计算机和社会科学家的多学科研究,以填补这一空白。该项目寻求利用推特帖子(Tweet)作为公民输入的主要来源,并将相关内容和网络信息与涉及人类角色扮演者的微观世界模拟结合在一起,以衡量各种有组织的制造轰动效应的策略的有效性。为了获得对公民输入的有意义的摘要,通过结合与现有知识库(地理名称、维基百科)适当融合的自然语言技术,使用语义内容分析来分析推文内容。通过创新地将内容分析与推特网络的动态分析相结合,进一步加强了内容分析,以实现各组织和公民可能感兴趣的简明和可信的信息。由此产生的总结将被提供给一个包括人类行为者在内的适当设计的微观世界模拟,以得出用于模拟灾害情况和典型组织结构的现实环境。该项目预计将在特定的灾难和应急响应背景下产生重大影响。然而,这项研究的内容预计将具有更广泛的实用价值,例如在电子商务和社会改革领域。从计算的角度来看,这个项目引入了人-内容-网络分析的新范式,其应用不仅仅限于有组织的感觉制造。对于社会科学家来说,它提供了一个平台,可以用来使用微观世界模拟来评估各种组织结构的相对有效性,并有望为可能更适合在紧急情况下传播信息的社会网络结构类型(对称和非对称的混合)提供新的见解。从教育的角度来看,大部分资金将用于培训来自计算和社会科学的下一代跨学科研究人员。研究活动也将与研究生课程工作相结合。将鼓励代表人数不足的群体参加。作为该项目的一部分开发的数据集和软件将通过项目页面(http://knoesis.org/research/semspc/projects/socs).提供给更广泛的研究社区

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasan Parthasarathy其他文献

Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
  • DOI:
    10.1109/mis.2024.3366669
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth
  • 通讯作者:
    Amit Sheth
Minimal invasive anterior lumbar interbody fusion (mini ALIF)
  • DOI:
    10.1007/s00586-010-1300-6
  • 发表时间:
    2010-02-06
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Max Aebi;Srinivasan Parthasarathy;Ashwin Avadhani;S. Rajasekaran
  • 通讯作者:
    S. Rajasekaran
Fast and Optimal Beam Alignment for Off-the-Shelf mmWave Devices
适用于现成毫米波设备的快速且最佳的光束对准
Poster Paper: Efficient Navigation of Cloud Performance with ’nuffTrace
海报论文:使用 nuffTrace 有效导航云性能
Bayesian Network Integration with GIS
贝叶斯网络与 GIS 集成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew O. Finley;S. Banerjee;Peter Z. Revesz;Keith A. Marsolo;Michael Twa;M. Bullimore;Srinivasan Parthasarathy
  • 通讯作者:
    Srinivasan Parthasarathy

Srinivasan Parthasarathy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasan Parthasarathy', 18)}}的其他基金

NSF Convergence Accelerator Track F: Actionable Sensemaking Tools for Curating and Authenticating Information in the Presence of Misinformation during Crises
NSF 融合加速器轨道 F:危机期间存在错误信息时用于整理和验证信息的可行的意义建构工具
  • 批准号:
    2137806
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
  • 批准号:
    2028944
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
EAGER: Practical Graph Sparsification on GPUs
EAGER:GPU 上的实用图稀疏化
  • 批准号:
    1550302
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response
Hazards SEES:社会和物理传感为灾害管理和响应提供决策支持
  • 批准号:
    1520870
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Sampling and Inference in Network Analysis
网络分析中的采样和推理
  • 批准号:
    1418265
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SHF:Small:Collabroative Research: Elastic Fidelity: Trading off Computational Accuracy for Energy Efficiency
SHF:Small:协作研究:弹性保真度:以计算精度换取能源效率
  • 批准号:
    1217353
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CCF: EAGER: Collaborative Research: Scalable Graph Mining and Clustering on Desktop Supercomputers
CCF:EAGER:协作研究:桌面超级计算机上的可扩展图挖掘和集群
  • 批准号:
    1240651
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
EAGER: Towards New Scalable Stochastic Flow Algorithms
EAGER:迈向新的可扩展随机流算法
  • 批准号:
    1141828
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Global Graphs: A Middleware for Data Intensive Computing
全局图:数据密集型计算的中间件
  • 批准号:
    0917070
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Scalable Data Analysis: An Architecture Conscious Approach
可扩展的数据分析:一种架构意识方法
  • 批准号:
    0702587
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

SoCS: Collaborative Research: Data-Driven, Computational Models for Discovery and Analysis of Framing
SoCS:协作研究:用于发现和分析框架的数据驱动计算模型
  • 批准号:
    1551192
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Dynamic Reconfiguration for Adaptive Computing in Heterogeneous SoCs
CSR:小型:协作研究:异构 SoC 中自适应计算的动态重新配置
  • 批准号:
    1526687
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Dynamic Reconfiguration for Adaptive Computing in Heterogeneous SoCs
CSR:小型:协作研究:异构 SoC 中自适应计算的动态重新配置
  • 批准号:
    1526562
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Strategies for Crowdsourcing Complex Design Work
SoCS:协作研究:众包复杂设计工作的策略
  • 批准号:
    1210836
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Focusing Attention to Improve the Performance of Citizen Science Systems: Beautiful Images and Perceptive Observers
SoCS:协作研究:集中注意力提高公民科学系统的性能:美丽的图像和敏锐的观察者
  • 批准号:
    1211071
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: A Human Computational Approach for Improving Data Quality in Citizen Science Projects
SoCS:协作研究:提高公民科学项目数据质量的人类计算方法
  • 批准号:
    1209714
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Local Community Crowdsourcing of Physical-World Tasks with Myrmex
SoCS:协作研究:本地社区与 Myrmex 一起众包物理世界任务
  • 批准号:
    1211079
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Focusing Attention to Improve the Performance of Citizen Science Systems: Beautiful Images and Perceptive Observers
SoCS:协作研究:集中注意力提高公民科学系统的性能:美丽的图像和敏锐的观察者
  • 批准号:
    1211094
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Data Driven, Computational Models for Discovery and Analysis of Framing
SoCS:协作研究:用于框架发现和分析的数据驱动计算模型
  • 批准号:
    1211153
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Novel Algorithms and Interaction Mechanisms to Enhance Social Production
SoCS:协作研究:增强社会生产的新颖算法和交互机制
  • 批准号:
    1212338
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了