EAGER: Towards New Scalable Stochastic Flow Algorithms
EAGER:迈向新的可扩展随机流算法
基本信息
- 批准号:1141828
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The process of clustering or partitioning of nodes within a graph is a fundamental task with applications in many areas ranging from social network analysis to chip design and from biological network analysis to the analysis of intelligence networks. This project seeks to explore and develop a new class of algorithms for graph clustering based on the principle of stochastic flows. Such algorithms have been used effectively on small scale biological networks and have been shown to be robust to noise effects. However, widespread utilization has been limited due to the lack of scalability of the algorithm and its inability, in its current form, to accommodate domain-specific constraints on clustering.This exploratory project seeks to address these two limitations: First, it seeks to develop a novel approach for supporting flexible clustering in the context of stochastic flow clustering, allowing users to control the skew of the resulting clustering arrangement (e.g., to ensure balanced clusters), and allowing the nodes of a graph to participate in multiple clusters (so as to allow clusters to overlap). Second, it seeks to develop solutions that can scale to very large graphs (e.g. social networks, web graphs) through the innovative applications of graph sparsification and novel parallel algorithms on high performance systems. Open source implementation of the resulting a proof-of-concept solution will be distributed to the broader scientific community. The scientific impact of this exploratory research agenda include the following: First, if one is successful in scaling up stochastic flow algorithms to web-scale datasets while retaining its many advantages, this would open up a viable robust and improved alternative to the current state-of-the art. Second, one can also employ stochastic flow clustering algorithms in a manner analogous to spectral methods on more traditional data sources (non-graphical), enabling more wide-spread use of flow clustering algorithms. The broader impacts of the project include increased research-based training opportunities for undergraduate and graduate students in data analytics. Additional information about the project can be found at: http://www.cse.ohio-state.edu/~srini/EAGER11/
图中节点的聚类或划分过程是一项基本任务,在许多领域都有应用,从社会网络分析到芯片设计,从生物网络分析到智能网络分析。本项目旨在探索和开发一类基于随机流原理的图聚类新算法。这种算法已被有效地用于小规模的生物网络,并已被证明是强大的噪声影响。然而,由于算法缺乏可扩展性,并且在当前形式下无法适应特定于域的聚类约束,因此广泛使用受到限制。这个探索性项目旨在解决这两个限制:首先,它旨在开发一种新的方法,支持灵活的集群的背景下,随机流聚类,从而允许用户控制所得到的群集布置的偏斜(例如,以确保平衡的集群),以及允许图的节点参与多个集群(以便允许集群重叠)。其次,它寻求开发解决方案,可以扩展到非常大的图形(例如社交网络,网络图),通过创新的应用程序的图形稀疏化和新的并行算法的高性能系统。由此产生的概念验证解决方案的开源实施将分发给更广泛的科学界。 这一探索性研究议程的科学影响包括:首先,如果一个人成功地将随机流算法扩展到网络规模的数据集,同时保留其许多优点,这将为当前最先进的技术开辟一个可行的鲁棒和改进的替代方案。还可以以类似于谱方法的方式对更传统的数据源采用随机流聚类算法(非图形化),使得能够更广泛地使用流聚类算法。该项目更广泛的影响包括为本科生和研究生提供更多的数据分析研究培训机会。有关该项目的更多信息,请访问:http://www.cse.ohio-state.edu/~srini/EAGER11/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan Parthasarathy其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Minimal invasive anterior lumbar interbody fusion (mini ALIF)
- DOI:
10.1007/s00586-010-1300-6 - 发表时间:
2010-02-06 - 期刊:
- 影响因子:2.700
- 作者:
Max Aebi;Srinivasan Parthasarathy;Ashwin Avadhani;S. Rajasekaran - 通讯作者:
S. Rajasekaran
Fast and Optimal Beam Alignment for Off-the-Shelf mmWave Devices
适用于现成毫米波设备的快速且最佳的光束对准
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei;Xin Liu;K. Srinivasan;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Poster Paper: Efficient Navigation of Cloud Performance with ’nuffTrace
海报论文:使用 nuffTrace 有效导航云性能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Qasim;M. Toslali;Q. Clark;Srinivasan Parthasarathy;Fábio Oliveira;A. Liu;Gianluca Stringhini;Ayse K. Coskun - 通讯作者:
Ayse K. Coskun
Bayesian Network Integration with GIS
贝叶斯网络与 GIS 集成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew O. Finley;S. Banerjee;Peter Z. Revesz;Keith A. Marsolo;Michael Twa;M. Bullimore;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Srinivasan Parthasarathy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan Parthasarathy', 18)}}的其他基金
NSF Convergence Accelerator Track F: Actionable Sensemaking Tools for Curating and Authenticating Information in the Presence of Misinformation during Crises
NSF 融合加速器轨道 F:危机期间存在错误信息时用于整理和验证信息的可行的意义建构工具
- 批准号:
2137806 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
- 批准号:
2028944 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response
Hazards SEES:社会和物理传感为灾害管理和响应提供决策支持
- 批准号:
1520870 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Practical Graph Sparsification on GPUs
EAGER:GPU 上的实用图稀疏化
- 批准号:
1550302 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Sampling and Inference in Network Analysis
网络分析中的采样和推理
- 批准号:
1418265 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SHF:Small:Collabroative Research: Elastic Fidelity: Trading off Computational Accuracy for Energy Efficiency
SHF:Small:协作研究:弹性保真度:以计算精度换取能源效率
- 批准号:
1217353 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CCF: EAGER: Collaborative Research: Scalable Graph Mining and Clustering on Desktop Supercomputers
CCF:EAGER:协作研究:桌面超级计算机上的可扩展图挖掘和集群
- 批准号:
1240651 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111118 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Global Graphs: A Middleware for Data Intensive Computing
全局图:数据密集型计算的中间件
- 批准号:
0917070 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Scalable Data Analysis: An Architecture Conscious Approach
可扩展的数据分析:一种架构意识方法
- 批准号:
0702587 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
- 批准号:
2350308 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
ARC Future Fellowships
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Studentship
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Establishment of new UK/Canada Collaboration towards the Advancement of Magnetic Particle Imaging (MPI)
英国/加拿大建立新的合作关系以推动磁粒子成像 (MPI) 的发展
- 批准号:
MR/Y033795/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
- 批准号:
EP/X030989/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
State Transformation in Historical Syria: Towards New Middle Eastern Area Studies with Mixed Methods
历史上叙利亚的国家转型:混合方法的新中东地区研究
- 批准号:
23H00043 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Transforming Tourism on East Asian Islands: Towards New Spatial Creation in the Post-Corona Era
东亚岛屿旅游业转型:后电晕时代的新空间创造
- 批准号:
23H03644 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inclusive Cross-sensory Social Play: Towards a new paradigm of assistive technology for early development of blind and visually impaired children
包容性跨感官社交游戏:为盲人和视障儿童的早期发展提供辅助技术的新范式
- 批准号:
EP/Y023676/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant














{{item.name}}会员




