Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
基本信息
- 批准号:2028944
- 负责人:
- 金额:$ 20.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to analyze and learn from large volumes of data is becoming important in many walks of human endeavor, including medicine, science, and engineering. Analysis workflows for high-resolution images (e.g. medical imaging, sky surveys), scientific simulations, as well as those for graph analytics and machine learning are typically time consuming because of the extreme scales of data involved. While the hardware elements of the modern data center are undergoing a rapid transformation to embrace the storage, processing, and analysis of needs of such applications - understanding of how the different layers of the systems stack interact with one another and contribute to end-to-end application performance is challenging. This planning project envisions the ACROPOLIS framework to address these challenges. ACROPOLIS will enable a comprehensive research agenda on systems software that will facilitate rapid and flexible construction of analytics workflows and their scalable execution. By facilitating the rapid prototyping of application drivers ACROPOLIS can also enable important scientific discoveries to potentially improve human health and better understand the world around us. The research enabled by ACROPOLIS will also educate many students, including those from under-represented groups, who will become part of a highly-trained workforce capable of addressing our nation's needs long into the future. With respect to broader impacts, ACROPOLIS will provide a unique research and training infrastructure that will catalyze research in multiple disciplines as well as facilitate convergent research across disciplines. Well-established initiatives at The Ohio State University, such as the Louis Stokes Alliances for Minority Participation (LSAMP) as well as new programs in Data Analytics, will facilitate the recruitment of graduate and undergraduate students for involvement in this research agenda. This project is aligned with two of NSF’s 10 Big Ideas: Harnessing the Data Revolution and Growing Convergence Research, as well as the American AI Initiative.The project addresses five key research pillars: 1) Flexible abstractions for parallel computation and data representation, 2) Modeling data movement complexity at extreme scales, 3) Pattern-driven scalable communication and I/O systems, 4) Near-memory architectures for machine learning and analytics, and 5) Cross-layer observability and introspection. Specifically, the focus is on the design of an end-to-end framework inculcating a high-performance, next-generation, heterogeneous, reconfigurable hardware and software stack to facilitate real-time interaction, analytics, and machine learning for a range of scientific disciplines including Computational Pathology and Computational Fluid Dynamics and Emergency Response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从大量数据中分析和学习的能力在人类奋进的许多行业中变得越来越重要,包括医学,科学和工程。高分辨率图像(例如医学成像、巡天)、科学模拟以及图形分析和机器学习的分析工作流程通常非常耗时,因为涉及的数据规模非常大。虽然现代数据中心的硬件元素正在经历快速转型,以满足此类应用程序的存储、处理和分析需求,但了解系统堆栈的不同层如何相互作用并有助于端到端应用程序性能是一项挑战。 该规划项目设想通过ACROPOLIS框架来应对这些挑战。ACROPOLIS将为系统软件提供全面的研究议程,以促进快速灵活地构建分析工作流程及其可扩展的执行。通过促进应用程序驱动程序的快速原型设计,ACROPOLIS还可以实现重要的科学发现,从而可能改善人类健康并更好地了解我们周围的世界。由ACROPOLIS启用的研究还将教育许多学生,包括那些来自代表性不足的群体,谁将成为一个训练有素的劳动力的一部分,能够解决我们国家的需求很长一段时间到未来。关于更广泛的影响,ACROPOLIS将提供独特的研究和培训基础设施,促进多学科的研究,并促进跨学科的融合研究。 在俄亥俄州州立大学,如路易斯·斯托克斯联盟少数民族参与(LSAMP)以及数据分析的新方案完善的举措,将促进招聘研究生和本科生参与这一研究议程。该项目与NSF的十大理念中的两个一致:利用数据革命和不断增长的融合研究,以及美国人工智能计划。该项目涉及五个关键研究支柱:1)并行计算和数据表示的灵活抽象,2)在极端规模下对数据移动复杂性建模,3)模式驱动的可扩展通信和I/O系统,4)用于机器学习和分析的近内存架构,以及5)跨层可观察性和内省。具体来说,重点是设计一个端到端的框架,灌输一个高性能,下一代,异构,可重新配置的硬件和软件堆栈,以促进实时交互,分析,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FairEGM: Fair Link Prediction and Recommendation via Emulated Graph Modification
- DOI:10.1145/3551624.3555287
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Sean Current;Yuntian He;Saket Gurukar;Srinivas Parthasarathy
- 通讯作者:Sean Current;Yuntian He;Saket Gurukar;Srinivas Parthasarathy
WebMILE: Democratizing Network Representation Learning at Scale
- DOI:10.14778/3554821.3554883
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Yuntian He;Yue Zhang-;Srinivas Parthasarathy
- 通讯作者:Yuntian He;Yue Zhang-;Srinivas Parthasarathy
Using Undervolting as an on-Device Defense Against Adversarial Machine Learning Attacks
- DOI:10.1109/host49136.2021.9702287
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Saikat Majumdar;Mohammad Hossein Samavatian;Kristin Barber;R. Teodorescu
- 通讯作者:Saikat Majumdar;Mohammad Hossein Samavatian;Kristin Barber;R. Teodorescu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan Parthasarathy其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Minimal invasive anterior lumbar interbody fusion (mini ALIF)
- DOI:
10.1007/s00586-010-1300-6 - 发表时间:
2010-02-06 - 期刊:
- 影响因子:2.700
- 作者:
Max Aebi;Srinivasan Parthasarathy;Ashwin Avadhani;S. Rajasekaran - 通讯作者:
S. Rajasekaran
Fast and Optimal Beam Alignment for Off-the-Shelf mmWave Devices
适用于现成毫米波设备的快速且最佳的光束对准
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei;Xin Liu;K. Srinivasan;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Poster Paper: Efficient Navigation of Cloud Performance with ’nuffTrace
海报论文:使用 nuffTrace 有效导航云性能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Qasim;M. Toslali;Q. Clark;Srinivasan Parthasarathy;Fábio Oliveira;A. Liu;Gianluca Stringhini;Ayse K. Coskun - 通讯作者:
Ayse K. Coskun
Bayesian Network Integration with GIS
贝叶斯网络与 GIS 集成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew O. Finley;S. Banerjee;Peter Z. Revesz;Keith A. Marsolo;Michael Twa;M. Bullimore;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Srinivasan Parthasarathy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan Parthasarathy', 18)}}的其他基金
NSF Convergence Accelerator Track F: Actionable Sensemaking Tools for Curating and Authenticating Information in the Presence of Misinformation during Crises
NSF 融合加速器轨道 F:危机期间存在错误信息时用于整理和验证信息的可行的意义建构工具
- 批准号:
2137806 - 财政年份:2021
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
EAGER: Practical Graph Sparsification on GPUs
EAGER:GPU 上的实用图稀疏化
- 批准号:
1550302 - 财政年份:2015
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response
Hazards SEES:社会和物理传感为灾害管理和响应提供决策支持
- 批准号:
1520870 - 财政年份:2015
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Sampling and Inference in Network Analysis
网络分析中的采样和推理
- 批准号:
1418265 - 财政年份:2014
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
SHF:Small:Collabroative Research: Elastic Fidelity: Trading off Computational Accuracy for Energy Efficiency
SHF:Small:协作研究:弹性保真度:以计算精度换取能源效率
- 批准号:
1217353 - 财政年份:2012
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
CCF: EAGER: Collaborative Research: Scalable Graph Mining and Clustering on Desktop Supercomputers
CCF:EAGER:协作研究:桌面超级计算机上的可扩展图挖掘和集群
- 批准号:
1240651 - 财政年份:2012
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
EAGER: Towards New Scalable Stochastic Flow Algorithms
EAGER:迈向新的可扩展随机流算法
- 批准号:
1141828 - 财政年份:2011
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111118 - 财政年份:2011
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Global Graphs: A Middleware for Data Intensive Computing
全局图:数据密集型计算的中间件
- 批准号:
0917070 - 财政年份:2009
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Scalable Data Analysis: An Architecture Conscious Approach
可扩展的数据分析:一种架构意识方法
- 批准号:
0702587 - 财政年份:2007
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Continuing Grant