EAGER: Practical Graph Sparsification on GPUs
EAGER:GPU 上的实用图稀疏化
基本信息
- 批准号:1550302
- 负责人:
- 金额:$ 11.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large number of real-world problems can be concisely abstracted and modeled as a graph or a network. A fundamental challenge with processing and analyzing such graphs is the issue of scale, millions or billions of nodes and billions and trillions of edges. While advances in technology have led to the development of faster and better architectures, simply porting existing codes to such architectures will not suffice -- performance gains are typically not commensurate with advances in technology in part due to the inherent data movement costs associated with such algorithms. This project seeks to investigate two complementary strategies (graph sparsification and architecture-aware algorithm designs) to address this challenge head on. The key outcomes of this research will be algorithmic and systemic innovations that can radically impact next generation graph analytic systems. This effort is expected to provide a model for the research, education and training of both undergraduate and graduate students including those from under-represented groups.With respect to innovation, practical graph sparsification strategies as a generic strategy to scaling down the data movement requirements of modern graph and network analysis algorithms will be investigated. Specifically, innovative hashing-based approaches to accommodate edge directionality, weighted graphs, and heterogeneous content will be developed. Additionally, radically new ways to implement and re-architect such analysis algorithms on current and next generation Graphics Processor Unit (GPU)-based systems while expicitly accounting for data movement costs within the architecture will be designed. Specifically, a novel sketching strategy will be employed for this purpose. In terms of impact, the sparsification-based approach can be significant in terms of the wide use and application of such strategies for scaling up tasks such as link prediction, community discovery, and collective classification and deploying them on modern GPUs. Exemplar outcomes are expected to include a high performance GPU-based network analysis tools for data scientists, and the interdisciplinary training of students in data mining, network science and high performance computing leveraging research in pedagogy, in conjunction with Ohio State University's new undergraduate major in data analytics. For further information see the project web site at: http://www.cse.ohio-state.edu/~srini/GraphSpar/
大量现实世界的问题可以被简洁地抽象和建模为图或网络。处理和分析此类图的一个基本挑战是规模问题、数百万或数十亿的节点以及数十亿和数万亿的边。虽然技术的进步导致了更快、更好的架构的开发,但仅仅将现有代码移植到此类架构是不够的——性能增益通常与技术的进步不相称,部分原因是与此类算法相关的固有数据移动成本。该项目旨在研究两种互补的策略(图稀疏化和架构感知算法设计)来应对这一挑战。这项研究的主要成果将是算法和系统创新,这些创新可以从根本上影响下一代图分析系统。这项工作预计将为本科生和研究生(包括来自代表性不足群体的学生)的研究、教育和培训提供一个模型。在创新方面,将研究实用的图稀疏化策略作为减少现代图和网络分析算法的数据移动要求的通用策略。具体来说,将开发基于哈希的创新方法来适应边缘方向性、加权图和异构内容。此外,还将设计在当前和下一代基于图形处理器单元(GPU)的系统上实施和重新架构此类分析算法的全新方法,同时明确考虑架构内的数据移动成本。具体来说,为此目的将采用一种新颖的草图策略。就影响而言,基于稀疏化的方法可以在此类策略的广泛使用和应用方面发挥重要作用,以扩大链路预测、社区发现和集体分类等任务并将其部署在现代 GPU 上。预计示范成果将包括为数据科学家提供基于 GPU 的高性能网络分析工具,以及利用教育学研究,结合俄亥俄州立大学新设的数据分析本科专业,对学生进行数据挖掘、网络科学和高性能计算方面的跨学科培训。有关更多信息,请参阅该项目网站:http://www.cse.ohio-state.edu/~srini/GraphSpar/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan Parthasarathy其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Minimal invasive anterior lumbar interbody fusion (mini ALIF)
- DOI:
10.1007/s00586-010-1300-6 - 发表时间:
2010-02-06 - 期刊:
- 影响因子:2.700
- 作者:
Max Aebi;Srinivasan Parthasarathy;Ashwin Avadhani;S. Rajasekaran - 通讯作者:
S. Rajasekaran
Fast and Optimal Beam Alignment for Off-the-Shelf mmWave Devices
适用于现成毫米波设备的快速且最佳的光束对准
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei;Xin Liu;K. Srinivasan;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Poster Paper: Efficient Navigation of Cloud Performance with ’nuffTrace
海报论文:使用 nuffTrace 有效导航云性能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Qasim;M. Toslali;Q. Clark;Srinivasan Parthasarathy;Fábio Oliveira;A. Liu;Gianluca Stringhini;Ayse K. Coskun - 通讯作者:
Ayse K. Coskun
Bayesian Network Integration with GIS
贝叶斯网络与 GIS 集成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew O. Finley;S. Banerjee;Peter Z. Revesz;Keith A. Marsolo;Michael Twa;M. Bullimore;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Srinivasan Parthasarathy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan Parthasarathy', 18)}}的其他基金
NSF Convergence Accelerator Track F: Actionable Sensemaking Tools for Curating and Authenticating Information in the Presence of Misinformation during Crises
NSF 融合加速器轨道 F:危机期间存在错误信息时用于整理和验证信息的可行的意义建构工具
- 批准号:
2137806 - 财政年份:2021
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
- 批准号:
2028944 - 财政年份:2020
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response
Hazards SEES:社会和物理传感为灾害管理和响应提供决策支持
- 批准号:
1520870 - 财政年份:2015
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Sampling and Inference in Network Analysis
网络分析中的采样和推理
- 批准号:
1418265 - 财政年份:2014
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
SHF:Small:Collabroative Research: Elastic Fidelity: Trading off Computational Accuracy for Energy Efficiency
SHF:Small:协作研究:弹性保真度:以计算精度换取能源效率
- 批准号:
1217353 - 财政年份:2012
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
CCF: EAGER: Collaborative Research: Scalable Graph Mining and Clustering on Desktop Supercomputers
CCF:EAGER:协作研究:桌面超级计算机上的可扩展图挖掘和集群
- 批准号:
1240651 - 财政年份:2012
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
EAGER: Towards New Scalable Stochastic Flow Algorithms
EAGER:迈向新的可扩展随机流算法
- 批准号:
1141828 - 财政年份:2011
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111118 - 财政年份:2011
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Global Graphs: A Middleware for Data Intensive Computing
全局图:数据密集型计算的中间件
- 批准号:
0917070 - 财政年份:2009
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Scalable Data Analysis: An Architecture Conscious Approach
可扩展的数据分析:一种架构意识方法
- 批准号:
0702587 - 财政年份:2007
- 资助金额:
$ 11.12万 - 项目类别:
Continuing Grant
相似海外基金
Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
- 批准号:
20K11691 - 财政年份:2020
- 资助金额:
$ 11.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical and functional graph data structures based on graph codings
基于图编码的实用和功能图数据结构
- 批准号:
25330001 - 财政年份:2013
- 资助金额:
$ 11.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated and Fundamental for Large-Scale and Practical Bidirectional Graph Transformation
大规模实用双向图转换的集成和基础
- 批准号:
25240009 - 财政年份:2013
- 资助金额:
$ 11.12万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on Code Clone Detection Using Program Dependency Graph For Practical Realization
利用程序依赖图进行代码克隆检测的研究及其实际实现
- 批准号:
22700031 - 财政年份:2009
- 资助金额:
$ 11.12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Practical graph algorithms
实用图算法
- 批准号:
41927-2000 - 财政年份:2003
- 资助金额:
$ 11.12万 - 项目类别:
Discovery Grants Program - Individual
Practical Study on Student's Time Conception related with the Process of Graph Cognition
图认知过程中学生时间观念的实践研究
- 批准号:
15500595 - 财政年份:2003
- 资助金额:
$ 11.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ITR: Collaborative Research: Towards Practical Graph -Based Coding Schemes for Realiable Wireless Communications
ITR:协作研究:实现基于图的实用编码方案以实现可靠的无线通信
- 批准号:
0231099 - 财政年份:2002
- 资助金额:
$ 11.12万 - 项目类别:
Continuing Grant
Practical graph algorithms
实用图算法
- 批准号:
41927-2000 - 财政年份:2002
- 资助金额:
$ 11.12万 - 项目类别:
Discovery Grants Program - Individual
ITR Collaborative Research: Toward Practical Graph-Based Coding Schemes For Reliable Wireless Communications
ITR 协作研究:实现可靠无线通信的实用的基于图的编码方案
- 批准号:
0205310 - 财政年份:2002
- 资助金额:
$ 11.12万 - 项目类别:
Continuing Grant
Practical graph algorithms
实用图算法
- 批准号:
41927-2000 - 财政年份:2001
- 资助金额:
$ 11.12万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




