Sampling and Inference in Network Analysis
网络分析中的采样和推理
基本信息
- 批准号:1418265
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of complex networks constitutes an interdisciplinary area of inquiry that transcends traditional knowledge domains by focusing on the fundamental interdependencies of components within various systems-of-interest. Examples abound from social networks to coupled human and natural systems, from financial networks to disease systems, and from telecommunication networks to energy and power systems. It is the interconnection among these components that often sit at the heart of our most vexing global grand challenge problems, including climate change, energy demands, security, health and wellness, and livelihood and poverty. The study of such complex systems and often large scale networks -- understanding their intrinsic properties, changes to their structure over time or due to external factors, multi-scale behavior of individuals to coarser grained modular communities -- can afford important insights to individuals, organizations and society at large when tackling such grand challenge problems. This project seeks to develop robust and scalable sampling methods for the modeling and analysis of large, potentially dynamic, networks. Sampling is often touted as a means to efficiently combat the inherent complexity of estimating the relevant characteristics of a population. Sampling a network is complicated because they are composed of two units (nodes and edges) that are not always nicely nested. A key objective will be to study and provide a sound mathematical basis along with high performance tools for both node-centric and edge-centric sampling methodologies for the analysis and modeling of networks. The objective of realizing high performance tools for real world applications, drawn from social networks and network biology, will be equally significant, and is necessary for sustained innovation of an inter-disciplinary nature. This research will shed light on the theoretical underpinnings of graph sampling and probabilistic inference in both the static and dynamic network contexts. From an educational standpoint, the investigators will train the next generation of graduate students in this interdisciplinary arena and will also actively encourage participation of undergraduates and under-represented minorities.
复杂网络的研究构成了一个跨学科的研究领域,它超越了传统的知识领域,专注于各种感兴趣的系统中组件的基本相互依赖关系。从社交网络到耦合的人类和自然系统,从金融网络到疾病系统,从电信网络到能源和电力系统,这样的例子比比皆是。正是这些组成部分之间的相互联系,往往是我们最棘手的全球重大挑战问题的核心,包括气候变化、能源需求、安全、卫生和健康以及生计和贫困。对这种复杂系统和大规模网络的研究--了解它们的内在属性,它们的结构随时间或外部因素而发生的变化,个体对粗粒度模块化社区的多尺度行为--可以为个人、组织和社会在解决这些重大挑战问题时提供重要的见解。 该项目旨在开发强大的和可扩展的采样方法,用于大型,潜在的动态网络的建模和分析。抽样经常被吹捧为一种有效克服估计人口相关特征的固有复杂性的手段。对网络进行采样是复杂的,因为它们由两个单元(节点和边)组成,这些单元并不总是嵌套得很好。一个关键的目标将是研究和提供一个良好的数学基础沿着与高性能的工具,以节点为中心和边缘为中心的抽样方法的分析和建模的网络。从社交网络和网络生物学中提取高性能工具,用于真实的世界应用,这一目标同样重要,对于跨学科性质的持续创新也是必要的。这项研究将揭示在静态和动态网络环境中的图抽样和概率推理的理论基础。从教育的角度来看,调查人员将在这一跨学科竞技场中培训下一代研究生,并将积极鼓励大学生和代表性不足的少数民族参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan Parthasarathy其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Minimal invasive anterior lumbar interbody fusion (mini ALIF)
- DOI:
10.1007/s00586-010-1300-6 - 发表时间:
2010-02-06 - 期刊:
- 影响因子:2.700
- 作者:
Max Aebi;Srinivasan Parthasarathy;Ashwin Avadhani;S. Rajasekaran - 通讯作者:
S. Rajasekaran
Fast and Optimal Beam Alignment for Off-the-Shelf mmWave Devices
适用于现成毫米波设备的快速且最佳的光束对准
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei;Xin Liu;K. Srinivasan;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Poster Paper: Efficient Navigation of Cloud Performance with ’nuffTrace
海报论文:使用 nuffTrace 有效导航云性能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Qasim;M. Toslali;Q. Clark;Srinivasan Parthasarathy;Fábio Oliveira;A. Liu;Gianluca Stringhini;Ayse K. Coskun - 通讯作者:
Ayse K. Coskun
Bayesian Network Integration with GIS
贝叶斯网络与 GIS 集成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew O. Finley;S. Banerjee;Peter Z. Revesz;Keith A. Marsolo;Michael Twa;M. Bullimore;Srinivasan Parthasarathy - 通讯作者:
Srinivasan Parthasarathy
Srinivasan Parthasarathy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan Parthasarathy', 18)}}的其他基金
NSF Convergence Accelerator Track F: Actionable Sensemaking Tools for Curating and Authenticating Information in the Presence of Misinformation during Crises
NSF 融合加速器轨道 F:危机期间存在错误信息时用于整理和验证信息的可行的意义建构工具
- 批准号:
2137806 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
- 批准号:
2028944 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Practical Graph Sparsification on GPUs
EAGER:GPU 上的实用图稀疏化
- 批准号:
1550302 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response
Hazards SEES:社会和物理传感为灾害管理和响应提供决策支持
- 批准号:
1520870 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF:Small:Collabroative Research: Elastic Fidelity: Trading off Computational Accuracy for Energy Efficiency
SHF:Small:协作研究:弹性保真度:以计算精度换取能源效率
- 批准号:
1217353 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CCF: EAGER: Collaborative Research: Scalable Graph Mining and Clustering on Desktop Supercomputers
CCF:EAGER:协作研究:桌面超级计算机上的可扩展图挖掘和集群
- 批准号:
1240651 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Towards New Scalable Stochastic Flow Algorithms
EAGER:迈向新的可扩展随机流算法
- 批准号:
1141828 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111118 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Global Graphs: A Middleware for Data Intensive Computing
全局图:数据密集型计算的中间件
- 批准号:
0917070 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Scalable Data Analysis: An Architecture Conscious Approach
可扩展的数据分析:一种架构意识方法
- 批准号:
0702587 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
- 批准号:
2304304 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Graph Neural Network Inference on Multi-FPGA Clusters
多 FPGA 集群上的图神经网络推理
- 批准号:
2894270 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
- 批准号:
2326893 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243052 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
- 批准号:
RGPIN-2022-03309 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Causal inference in network settings
网络设置中的因果推断
- 批准号:
RGPIN-2019-04230 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Classification-based inference for contact network-based disease transmission systems
基于接触网络的疾病传播系统的基于分类的推理
- 批准号:
573859-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPAS-2021-00015 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Accelerator Supplements














{{item.name}}会员




