Connectable nanoscale DNA logic gates
可连接的纳米级 DNA 逻辑门
基本信息
- 批准号:1117205
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current microprocessor systems are based on semiconductor logic gates, which employ electronic input and output signals and power supplies. Each type of logic gates has a specific input?output signal correlation pattern. Voltages can be simply high or low: digital 1 or 0, respectively. A critical feature, which contributes to the success of modern computers, is input-output signal uniformity: the same voltage value emerging as output of one gate can be admitted as input of another gate. Very large scale integration is a crucial component of modern silicon processors. The development of even more powerful processors depends on continued progress in miniaturizing their components. However, if current trends continue, conventional silicon chips will soon reach their physical limits. By then, their transistors will be so small that current leakage will become an insurmountable problem. It is believed that constructing computers in which computations are performed by individual molecules is the inevitable wave of the future (P. Ball, Nature 2000, 406, 118-120). The long-term goal of this project is the development of a first DNA-based nanocomputer, a biocompatible and smaller counterpart of the modern silicon-based processor. This project aims at the solution of the two major problems of molecular computation: the universal large scale connectivity of molecular logic gates and precise localization of logic gates in a nanoscale environment. A basic set of connectable DNA logic gates (NOT, AND OR) will be created. The DNA gates will be organized in a network that corresponds to an EX-OR logic function both in solution and on a two-dimensional DNA platform. Accomplishing the project will deliver the first connectable nanoscale logic units, a basis for the future DNA nanoprocessor. This research will be integrated with education by introducing research topics into undergraduate teaching, students, research training at undergraduate and graduate levels, postdoctoral training.
当前的微处理器系统基于半导体逻辑门,其采用电子输入和输出信号以及电源。每种类型的逻辑门有一个特定的输入?输出信号相关模式。电压可以是简单的高或低:数字1或0,分别。有助于现代计算机成功的一个关键特征是输入-输出信号的一致性:作为一个门的输出出现的相同电压值可以作为另一个门的输入。超大规模集成电路是现代硅处理器的关键组成部分。更强大的处理器的开发取决于其组件的集成化的持续进展。然而,如果目前的趋势继续下去,传统的硅芯片将很快达到其物理极限。到那时,它们的晶体管将非常小,电流泄漏将成为一个无法克服的问题。据信,构建由单个分子执行计算的计算机是未来不可避免的潮流(P. Ball,Nature 2000,406,118-120)。该项目的长期目标是开发第一台基于DNA的纳米计算机,这是现代硅基处理器的生物相容性和较小的对应物。该项目旨在解决分子计算的两个主要问题:分子逻辑门的通用大规模连接和逻辑门在纳米级环境中的精确定位。将创建一组基本的可连接DNA逻辑门(NOT,AND OR)。DNA门将被组织在一个网络中,该网络对应于溶液和二维DNA平台上的EX-OR逻辑函数。完成该项目将提供第一个可连接的纳米级逻辑单元,这是未来DNA纳米处理器的基础。这项研究将通过将研究课题引入本科教学,学生,本科和研究生水平的研究培训,博士后培训与教育相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Kolpashchikov其他文献
Dmitry Kolpashchikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Kolpashchikov', 18)}}的其他基金
CCF:SHF:Small:NAND gate based integrated DNA circuits
CCF:SHF:Small:基于与非门的集成 DNA 电路
- 批准号:
2226021 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: Development and Manufacturing Integrated DNA Circuits
SHF:小型:开发和制造集成 DNA 电路
- 批准号:
1907824 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Toward a DNA Nanoprocessor: Optimization of Tile-Associated DNA Circuits
迈向 DNA 纳米处理器:Tile 相关 DNA 电路的优化
- 批准号:
1423219 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
- 批准号:
10598739 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Defining the role of ligand spatial organization in T cell signaling with DNA origami
用 DNA 折纸定义配体空间组织在 T 细胞信号传导中的作用
- 批准号:
10680089 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Probing mesoscale receptor organization in T cell signaling with DNA origami
用 DNA 折纸探测 T 细胞信号传导中的中尺度受体组织
- 批准号:
10726455 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
- 批准号:
10587455 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
- 批准号:
2240000 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Enzyme-Powered Self-Propelled DNA Nanoparticles for Disruption and Antibiotic Delivery in Topical Biofilms
用于局部生物膜破坏和抗生素递送的酶驱动自驱动 DNA 纳米颗粒
- 批准号:
10528087 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Intracellular delivery of DNA-editing proteins by viscoelastic cell stretching
通过粘弹性细胞拉伸在细胞内递送 DNA 编辑蛋白
- 批准号:
10524268 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:














{{item.name}}会员




