SOLAR Collaborative: Multiplasmonic Light Harvesting for Thin Film Solar Cells

SOLAR Collaborative:薄膜太阳能电池的多等离子体光收集

基本信息

  • 批准号:
    1125591
  • 负责人:
  • 金额:
    $ 105万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project is co-funded by the Divisions of Materials Research, Chemistry, and Mathematical Sciences.Technical: A team of chemists, materials scientists, and engineers at Pennsylvania State University is joined by a mathematician at the University of Delaware to investigate light-harvesting thin films for solar cells that contain plasmonic nanostructures coupled to periodic dielectrics. The project links the concepts of strong light scattering by sub-wavelength metallic structures with the light-trapping and light-guiding properties of photonic crystals. These structures are called multiplasmonic because they support the propagation of multiple surface plasmon-polariton (SPP) modes and can utilize both s- and p-polarized incident light. They offer promise for substantially increasing the utilization of light in thin film photovoltaic cells. This concept is explored computationally and experimentally in thin film semiconductor and planar dielectric light-concentrating architectures. The Rigorous Coupled Wave Approach is used to simulate and optimize light scattering and propagation. Because these calculations are time-intensive, mathematical research is planned to develop more efficient algorithms that will incorporate the optical properties needed to provide physically meaningful solutions. A fully 3-D time domain simulation tool will then be developed to enable broadband modeling of the multiplasmonic structures. In concert with the computational effort, the multiplasmonic concept is tested and validated in several experimental architectures. The simplest of these is a conventional SPP scattering layer, consisting of a metal backing film with a grid of scattering centers on a thin film multi-junction cell containing layers of polycrystalline or amorphous semiconductors. This structure allows the computational model to be validated in a photovoltaic cell and is expected to quantify polarization and multi-mode effects. Planar concentrator architectures containing periodic oxide or polymer dielectric layers with heterogeneously integrated silicon microcells are studied as photovoltaic modules. These designs are extended to a spectrum-splitting module that combines dye-sensitized solar cells and multiplasmonic silicon cells. New optical nanostructures and new patterning techniques are developed in order to fabricate these modules.Non-technical: The large-scale implementation of solar photovoltaic power, a renewable resource that has the potential to dramatically impact the global energy economy, is limited by cost. The goal of this project is to explore a new principle for light trapping in solar cells. This approach could enable the design of solar cells that contain five times less silicon than conventional cells, while delivering the same amount of power. The concept is to couple two kinds of optical nanostructures: (1) very small metal particles, which are well known to scatter light strongly, and (2) patterned insulators that diffract light - the same phenomenon that gives rise to the colors of opals and butterfly wings. Theory predicts and preliminary experiments confirm that thin films of these combined structures are particularly good at light trapping. The challenge is to investigate the properties of different combinations, for which more efficient mathematical tools as well as fabrication methods must be developed, and to demonstrate that they can be integrated into solar cells in a manufacturable way. This project, with its multidisciplinary nature, engage graduate students in research that bridges topics in nanomaterials synthesis and patterning, solar cell module design, optical and electrical measurements, modeling, and mathematical algorithm development. Undergraduate honors students are also involved in this project at both Penn State and Delaware.
该项目由材料研究、化学和数学科学部门共同资助。技术:宾夕法尼亚州立大学的化学家、材料科学家和工程师团队与特拉华大学的数学家一起研究太阳能电池的光收集薄膜,该薄膜包含与周期性电介质耦合的等离子体纳米结构。该项目将亚波长金属结构的强光散射概念与光子晶体的光捕获和光导特性联系起来。这些结构被称为多等离子体,因为它们支持多种表面等离子体偏振 (SPP) 模式的传播,并且可以利用 s 偏振和 p 偏振入射光。它们有望大幅提高薄膜光伏电池的光利用率。在薄膜半导体和平面电介质聚光架构中通过计算和实验探索了这一概念。严格耦合波方法用于模拟和优化光散射和传播。由于这些计算非常耗时,因此数学研究计划开发更有效的算法,该算法将结合提供物理上有意义的解决方案所需的光学特性。然后将开发一个完全 3D 时域仿真工具,以实现多等离子体结构的宽带建模。与计算工作相配合,多等离子体概念在多个实验架构中进行了测试和验证。其中最简单的是传统的 SPP 散射层,由金属背衬膜组成,该金属背衬膜在包含多晶或非晶半导体层的薄膜多结电池上具有散射中心网格。这种结构允许在光伏电池中验证计算模型,并有望量化偏振和多模效应。包含周期性氧化物或聚合物介电层和异质集成硅微电池的平面聚光器架构作为光伏模块进行了研究。这些设计扩展到结合染料敏化太阳能电池和多等离子体硅电池的光谱分离模块。为了制造这些模块,开发了新的光学纳米结构和新的图案化技术。非技术性:太阳能光伏发电是一种可再生资源,有可能极大地影响全球能源经济,其大规模实施受到成本的限制。该项目的目标是探索太阳能电池中光捕获的新原理。这种方法可以设计出比传统电池少五倍硅含量的太阳能电池,同时提供相同的电量。这个概念是将两种光学纳米结构结合起来:(1)非常小的金属颗粒,众所周知,它们会强烈散射光;(2)衍射光的图案化绝缘体——这种现象与蛋白石和蝴蝶翅膀的颜色相同。理论预测和初步实验证实,这些组合结构的薄膜特别擅长光捕获。面临的挑战是研究不同组合的特性,为此必须开发更有效的数学工具和制造方法,并证明它们可以以可制造的方式集成到太阳能电池中。该项目具有多学科性质,让研究生参与连接纳米材料合成和图案化、太阳能电池模块设计、光学和电气测量、建模和数学算法开发等主题的研究。宾夕法尼亚州立大学和特拉华大学的本科荣誉学生也参与了这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Mallouk其他文献

Interpersonal Conflict and Mental Imagery
人际冲突和心理意象
  • DOI:
    10.1007/978-1-4684-3974-8_24
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Mallouk
  • 通讯作者:
    Thomas Mallouk

Thomas Mallouk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Mallouk', 18)}}的其他基金

Layered Inorganic Solids as Building Blocks for Functional Materials
层状无机固体作为功能材料的构建模块
  • 批准号:
    1952877
  • 财政年份:
    2019
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
Layered Inorganic Solids as Building Blocks for Functional Materials
层状无机固体作为功能材料的构建模块
  • 批准号:
    1807116
  • 财政年份:
    2018
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
Layered Inorganic Solids as Building Blocks for Functional Materials
层状无机固体作为功能材料的构建模块
  • 批准号:
    1306938
  • 财政年份:
    2013
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
2012 Renewable Energy: Solar Fuels GRC & GRS, Lucca, Italy, May 12-13, 2012 and May 13-18, 2012
2012 可再生能源:太阳能燃料 GRC
  • 批准号:
    1139170
  • 财政年份:
    2012
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Lamellar Inorganic Solids as Building Blocks for Functional Materials
层状无机固体作为功能材料的构建模块
  • 批准号:
    0910513
  • 财政年份:
    2009
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
RDE-FRI: Independent Laboratory Access for Blind and Low Vision High Shool Students in the Mainstream Science Classroom
RDE-FRI:盲人和低视力高中生进入主流科学课堂的独立实验室
  • 批准号:
    0726417
  • 财政年份:
    2007
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Lamellar Inorganic Solids as Building Blocks for Functional Materials
层状无机固体作为功能材料的构建模块
  • 批准号:
    0616450
  • 财政年份:
    2006
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
2005 Gordon Research Conference on The Chemistry of Electronic Materials, New London, CT, July 17-22, 2005
2005 年戈登电子材料化学研究会议,康涅狄格州新伦敦,2005 年 7 月 17-22 日
  • 批准号:
    0503640
  • 财政年份:
    2005
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Techniques and Tools to Enhance Blind and Visually Impaired Students Participation in High School Level and General Chemistry Laboratory Classes
提高盲人和视障学生参与高中水平和普通化学实验课程的技术和工具
  • 批准号:
    0435656
  • 财政年份:
    2004
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
NIRT: Heterogeneous Integration of Nanowires for Chemical Sensor Arrays
NIRT:用于化学传感器阵列的纳米线异构集成
  • 批准号:
    0303981
  • 财政年份:
    2003
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
AHRC Collaborative Doctoral Partnership Coordination Group
AHRC 合作博士伙伴协调小组
  • 批准号:
    AH/Z505778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Research Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 105万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了