Methods and Applications of Computational Polymer Field Theory
计算聚合物场论的方法与应用
基本信息
- 批准号:1160895
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical and computational research and education to develop simulation methods for polymers, complex fluids, and soft materials beyond mean field theory. This research builds on the recent development of the field-theoretic-simulation method by the PI and co-workers. In this project, the PI aims to make fundamental, transformative breakthroughs in understanding and methodology that will enable field-theoretic-simulation studies of entirely new classes of polymers and soft materials. Specific thrusts of the project include:1. Systematic coarse-graining methods. Methods will be developed for coarse graining polymer field theories in conjunction with field-theoretic simulations. Force matching techniques from the protein modeling community will be integrated with numerical renormalization group methods to accurately parameterize field theory models of soft materials on successively coarser computational grids. This methodology will enable simulation studies of diverse families of nano- and meso-structured polymeric fluids on unprecedented length scales.2. Coherent states formalism. A new 'coherent states' representation of polymer field theory models will be investigated as a framework for numerical simulations. The coherent states approach utilizes stochastic fields that resemble forward and backward polymer propagators. Among other potential advantages, the proposed framework has a less complex analytic structure that could facilitate numerical coarse-graining.3. Computational framework for nucleation studies. The PI aims to integrate field-theoretic simulations, coarse-graining techniques, and newly developed minimum energy path methods to estimate kinetic barriers and rates of phase transformations in nanostructured soft materials. The work will go beyond traditional mean-field approaches and thus allows the treatment of fluctuation mediated transitions. Relevant applications include the estimation of defect annealing rates in directed self-assembly approaches to microelectronics patterning with block copolymers.This award supports graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials and polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained through this project will be further leveraged through the Complex Fluids Design Consortium, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education to develop computer simulation methods to study materials composed of polymers which are long chain-like molecules. Some examples include DNA and the fundamental building blocks of plastics. The simulation technique is complementary to methods that aim to directly simulate the interacting polymers and their motions. The PI?s research includes the application of these computer simulation methods to the design of new materials based on polymers, for example plastics and materials composed of small organic or inorganic particles in a matrix composed of polymers. Advanced computer simulation methods for polymers offer the potential to better utilize the tendency of polymers to assemble themselves into intricate and complex structures at the microscopic level to make microelectronics, sensors, solar energy converters, and other devices.This award supports graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials and polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained through this project will be further leveraged through the Complex Fluids Design Consortium, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.
该奖项支持理论和计算研究和教育,以开发超出平均场理论的聚合物,复杂流体和软材料的模拟方法。本研究建立在PI及其同事的场论模拟方法的最新发展基础上。在这个项目中,PI的目标是在理解和方法上取得根本性的变革性突破,这将使全新类别的聚合物和软材料的场论模拟研究成为可能。项目的具体重点包括:1. 系统的粗粒化方法。方法将开发粗粒化聚合物场理论结合场理论模拟。来自蛋白质建模社区的力匹配技术将与数值重整化群方法相结合,以在连续的粗计算网格上精确地参数化软材料的场论模型。这种方法将使模拟研究的不同家庭的纳米和介观结构的聚合物流体在前所未有的长度尺度。相干态形式主义。一个新的“相干态”表示的聚合物场理论模型将作为一个框架进行研究的数值模拟。相干态方法利用类似于前向和后向聚合物传播子的随机场。在其他潜在的优点中,所提出的框架具有较不复杂的分析结构,可以促进数值粗粒度。成核研究的计算框架。PI旨在整合场论模拟,粗粒化技术和新开发的最小能量路径方法,以估计纳米结构软材料中的动力学障碍和相变速率。这项工作将超越传统的平均场方法,从而允许治疗波动介导的过渡。相关应用包括在定向自组装方法中估计缺陷退火速率,以利用嵌段共聚物进行微电子图案化。该奖项支持理论和计算聚合物科学的研究生和博士后培训。一个特别的重点将是通过与UCSB化学工程,材料和化学实验组的密切结合,使学生和博士后接受经典物理学培训,以获得更广泛的软材料和聚合物科学学科。通过该项目获得的基本理解将通过复杂流体设计联盟进一步发挥作用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于商业聚合物和复杂流体配方的计算设计。非技术总结该奖项支持理论和计算研究和教育,以开发计算机模拟方法来研究由长链分子聚合物组成的材料。一些例子包括DNA和塑料的基本组成部分。模拟技术是旨在直接模拟相互作用的聚合物及其运动的方法的补充。私家侦探?的研究包括应用这些计算机模拟方法设计基于聚合物的新材料,例如塑料和由聚合物基质中的有机或无机小颗粒组成的材料。聚合物的先进计算机模拟方法提供了更好地利用聚合物在微观水平上组装成复杂结构的趋势的潜力,以制造微电子,传感器,太阳能转换器和其他设备。该奖项支持理论和计算聚合物科学的研究生和博士后培训。一个特别的重点将是通过与UCSB化学工程,材料和化学实验组的密切结合,使学生和博士后接受经典物理学培训,以获得更广泛的软材料和聚合物科学学科。通过该项目获得的基本理解将通过复杂流体设计联盟进一步利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于商业聚合物和复杂流体配方的计算设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Fredrickson其他文献
Glenn Fredrickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Fredrickson', 18)}}的其他基金
Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
- 批准号:
2104255 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Computationally-Driven Design of Advanced Block Polymer Nanomaterials
DMREF:协作研究:先进嵌段聚合物纳米材料的计算驱动设计
- 批准号:
1725414 - 财政年份:2017
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Computational Polymer Field Theory: Revisiting the Sign Problem
计算聚合物场论:重新审视符号问题
- 批准号:
1506008 - 财政年份:2015
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
- 批准号:
1332842 - 财政年份:2013
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Workshop on Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
理论和计算高分子材料和软物质机遇研讨会
- 批准号:
1344297 - 财政年份:2013
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
- 批准号:
0904499 - 财政年份:2009
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Fundamentals and Applications
场论聚合物模拟:基础知识和应用
- 批准号:
0603710 - 财政年份:2006
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
Theoretical Studies of Inhomogeneous Polymers
非均相聚合物的理论研究
- 批准号:
0312097 - 财政年份:2003
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
NER: Computational Design of Nanostructured Complex Fluid Formulations: A Feasibility Study
NER:纳米结构复杂流体配方的计算设计:可行性研究
- 批准号:
0304596 - 财政年份:2003
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
- 批准号:
2348884 - 财政年份:2024
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
- 批准号:
2151235 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
- 批准号:
RGPIN-2019-07154 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
- 批准号:
RGPIN-2019-07154 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
- 批准号:
RGPIN-2016-04927 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
- 批准号:
RGPIN-2016-05637 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Efficient computational methods for nonlinear optimization and machine learning problems with applications to power systems
职业:非线性优化和机器学习问题的有效计算方法及其在电力系统中的应用
- 批准号:
2045829 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant