Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
基本信息
- 批准号:0904499
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award. It supports theoretical and computational research and education that will develop the "field-theoretic simulation" method, enabling direct numerical investigations of field theory models of polymers, complex fluids, and soft materials without resorting to the mean-field approximation. The PI aims to make fundamental, transformative breakthroughs in understanding and methodology that will enable field-theoretic simulation studies of entirely new classes of polymers and soft materials. Specific components of the project include: + Chebyshev spectral methods. This research thrust will explore the use of Chebyshev spectral collocation methods in solving polymer self-consistent field theory equations for thin polymer films. The high accuracy provided by Chebyshev methods could facilitate simulations of multi-layer block copolymer films that are currently inaccessible, but highly relevant to the rapidly developing field of block copolymer lithography. + Grafted polymer layers. This thrust aims to develop novel approaches and numerical methods for conducting high resolution field-theoretic and self-consistent field theory simulations of grafted polymer layers. An expected outcome of this work is computational tools that will revolutionize ligand design in polymer-grafted nanoparticles, prediction of the structure and assembly of polymer functionalized nanoparticles and colloids, and guide "grafted from" nano-patterning schemes for microelectronics fabrication. + Free energy estimation. This research thrust will develop theoretical and computational strategies for computing absolute and relative free energies in field-based simulations. Such methods will enable the determination of phase diagrams, energy landscapes, and kinetic pathways for broad classes of soft material systems that defy conventional approaches. + Systematic coarse-graining method. The PI aims to develop methods for systematic coarse-graining of polymer field theories in conjunction with FTS simulations. This will facilitate the isolation of lattice cutoff effects and enable simulations of diverse families of equilibrium polymeric fluids on unprecedented length scales. This award supports graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials/polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained under this project will be further leveraged through the Complex Fluids Design Consortium (CFDC) at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award. It supports theoretical and computational research and education that will extend develop new theoretical and advanced computer simulation methods to study systems composed of polymers which are long chain-like molecules. Some examples include DNA and the fundamental building blocks of plastics. The PI?s research includes the application of these computer simulation methods to the design of new materials based on polymers, for example plastics and materials composed of small organic or inorganic particles in a matrix composed of polymers. This award supports graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials/polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained under this project will be further leveraged through the Complex Fluids Design Consortium (CFDC) at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.
材料研究部和数学科学部为该奖项提供资金。它支持理论和计算研究和教育,将开发“场论模拟”方法,使聚合物,复杂流体和软材料的场论模型的直接数值研究,而无需诉诸平均场近似。PI的目标是在理解和方法上取得根本性的变革性突破,这将使全新类别的聚合物和软材料的场论模拟研究成为可能。该项目的具体组成部分包括:+切比雪夫谱方法。本研究将探讨使用切比雪夫光谱配置法求解聚合物薄膜的聚合物自洽场理论方程。切比雪夫方法提供的高精度可以促进目前无法实现的多层嵌段共聚物膜的模拟,但与快速发展的嵌段共聚物光刻领域高度相关。+ 接枝聚合物层。这一推力的目的是开发新的方法和数值方法进行高分辨率的场理论和自洽场理论模拟的接枝聚合物层。这项工作的预期成果是计算工具,这将彻底改变聚合物接枝纳米粒子的配体设计,预测聚合物功能化纳米粒子和胶体的结构和组装,并指导微电子制造的“接枝”纳米图案化方案。+ 自由能估算这项研究的重点将开发理论和计算策略,用于计算基于场的模拟中的绝对和相对自由能。这种方法将使确定相图,能源景观和动力学途径的广泛类别的软材料系统,无视传统的方法。+ 系统粗粒化方法。PI的目的是开发方法,结合FTS模拟系统粗粒化的聚合物场理论。这将有助于隔离晶格截止效应,并使不同的家庭的平衡聚合物流体的模拟前所未有的长度尺度。该奖项支持理论和计算聚合物科学的研究生和博士后培训。一个特别的重点将是通过与UCSB化学工程,材料和化学实验组的紧密结合,使学生和博士后接受经典物理学培训,从而获得更广泛的软材料/聚合物科学学科。在这个项目下获得的基本理解将进一步通过复杂流体设计联盟(CFDC)在UCSB,一个行业-国家实验室-学术合作伙伴关系,是解决商业聚合物和复杂流体配方的计算设计杠杆。NONTECHNICAL SUMMARYThe Division of Materials Research and Division of Mathematical Sciences贡献资金给这个奖项。它支持理论和计算研究和教育,将扩展开发新的理论和先进的计算机模拟方法,以研究由长链状分子聚合物组成的系统。一些例子包括DNA和塑料的基本组成部分。私家侦探?的研究包括应用这些计算机模拟方法设计基于聚合物的新材料,例如塑料和由聚合物基质中的有机或无机小颗粒组成的材料。该奖项支持理论和计算聚合物科学的研究生和博士后培训。一个特别的重点将是通过与UCSB化学工程,材料和化学实验组的紧密结合,使学生和博士后接受经典物理学培训,从而获得更广泛的软材料/聚合物科学学科。在该项目下获得的基本理解将通过UCSB的复杂流体设计联盟(CFDC)进一步利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于商业聚合物和复杂流体配方的计算设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Fredrickson其他文献
Glenn Fredrickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Fredrickson', 18)}}的其他基金
Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
- 批准号:
2104255 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Computationally-Driven Design of Advanced Block Polymer Nanomaterials
DMREF:协作研究:先进嵌段聚合物纳米材料的计算驱动设计
- 批准号:
1725414 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Computational Polymer Field Theory: Revisiting the Sign Problem
计算聚合物场论:重新审视符号问题
- 批准号:
1506008 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
- 批准号:
1332842 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Workshop on Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
理论和计算高分子材料和软物质机遇研讨会
- 批准号:
1344297 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Methods and Applications of Computational Polymer Field Theory
计算聚合物场论的方法与应用
- 批准号:
1160895 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Fundamentals and Applications
场论聚合物模拟:基础知识和应用
- 批准号:
0603710 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Theoretical Studies of Inhomogeneous Polymers
非均相聚合物的理论研究
- 批准号:
0312097 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
NER: Computational Design of Nanostructured Complex Fluid Formulations: A Feasibility Study
NER:纳米结构复杂流体配方的计算设计:可行性研究
- 批准号:
0304596 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
- 批准号:
2887741 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Studentship














{{item.name}}会员




