Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
基本信息
- 批准号:2104255
- 负责人:
- 金额:$ 62.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theory and computation, and education to advance computer simulation of polymeric materials which are based on polymers, long-chain-like molecules. Polymers are versatile materials that have remarkably broad applications in textiles, plastics and rubbers, paints and coatings, and consumer products including haircare products, cleansers, detergents, etc. They are also increasingly important in new energy harvesting technologies such as organic solar cells, as solid electrolytes in energy storage devices such as batteries, and in advanced drug delivery and medical devices. Perhaps surprisingly, the design of new polymers for such applications proceeds by trial-and-error experimentation until the molecular design yields the targeted properties and function.This project aims to advance in-silico computational design of polymeric materials. One component of the project will develop a new theoretical representation of polymers into a computational platform that will enable the design of materials with thermally reversible bonds. Such materials have unique properties such as self-repair when damaged, or responsiveness to thermal or chemical stimuli, both important in a variety of emerging applications. A second effort aims to link molecular simulations at the atomic scale with simulations that employ a different theoretical formulation and can reach scales of hundreds of micrometers. This capability will enable chemical details to be embedded in the theoretical models; the latter providing the link to polymer material properties. If successful, this multiple length scale modeling platform could dramatically accelerate the design of polymers for existing and new applications.Broader impacts of the proposed research include engagement by the project personnel in graduate, undergraduate, and post-doctoral training in theoretical and computational polymer science. Theoretically-oriented students will be exposed to broader soft materials disciplines through a close coupling with experimental groups at the University of California, Santa Barbara (UCSB) in chemical engineering, materials, and chemistry. Knowledge gained under the proposed project will be leveraged through the Complex Fluids Design Consortium at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercially relevant polymer formulations. All participants will contribute to the vibrant education and outreach programs of UCSB's Materials Research Science and Engineering Center.TECHNICAL SUMMARYThis award supports theory and computation, and education to advance theory and modeling of polymeric materials. This project will enhance the capabilities of the field-theoretic simulation (FTS) method, permitting numerical investigations of field theory models of polymers and soft materials without resorting to a mean-field approximation. One project component builds a new platform for FTS based on coherent-states polymer field theory, a long-neglected representation of interacting polymers inspired by quantum field theory. The proposed work aims to develop and optimize algorithms for simulations of coherent states models and apply those algorithms to fundamental studies of reversibly bonding, supramolecular polymers. Relationships will be explored between variables such as bonding equilibrium constants, stoichiometry and polymer architecture, and self-assembly behavior and thermodynamic properties. The unique structure of the coherent-states framework will enable a new force-matching scheme for systematic coarse-graining within FTS, applicable to both supramolecular and non-reactive polymer systems. Another component of the proposed research is to develop a workflow in which all-atom particle models are mapped to coarse-grained particle models using relative entropy minimization; the latter models of a form to allow analytical conversion to a fully-parameterized field theory. FTS can then be used to access mesoscale structure and thermodynamic properties directly connected to the underlying chemistry of the polymers. Broader impacts of the proposed research include engagement by the project personnel in graduate, undergraduate, and post-doctoral training in theoretical and computational polymer science. Theoretically-oriented students will be exposed to broader soft materials disciplines through a close coupling with experimental groups at the University of California, Santa Barbara (UCSB) in chemical engineering, materials, and chemistry. Knowledge gained under the proposed project will be leveraged through the Complex Fluids Design Consortium at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercially relevant polymer formulations. The all-atom to FTS workflow targeted by the project has the potential to revolutionize in silico design of such formulations. All participants will contribute to the vibrant education and outreach programs of UCSB's Materials Research Science and Engineering Center.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持理论和计算,以及促进以聚合物、长链分子为基础的聚合物材料的计算机模拟的教育。聚合物是一种用途广泛的材料,在纺织品、塑料和橡胶、油漆和涂料以及美发产品、清洁剂、洗涤剂等消费品中有着非常广泛的应用。它们在有机太阳能电池等新能源收集技术中也越来越重要,在电池等能量存储设备中作为固体电解液,在先进的药物输送和医疗设备中也越来越重要。也许令人惊讶的是,针对这类应用的新聚合物的设计是通过反复试验进行的,直到分子设计产生目标特性和功能为止。该项目旨在推进聚合物材料的电子计算设计。该项目的一个组成部分将把聚合物的新理论表示法发展成一个计算平台,使具有热可逆键的材料的设计成为可能。这类材料具有独特的性能,如受损时的自我修复,或对热或化学刺激的响应,这两种特性在各种新兴应用中都很重要。第二项努力旨在将原子尺度的分子模拟与使用不同理论公式的模拟联系起来,模拟可以达到数百微米的规模。这一能力将使化学细节能够嵌入到理论模型中;后者提供了与聚合物材料特性的联系。如果成功,这个多长度尺度建模平台将极大地加快现有和新应用的聚合物设计。拟议研究的广泛影响包括项目人员在理论和计算聚合物科学方面的研究生、本科生和博士后培训。注重理论的学生将通过与加州大学圣巴巴拉分校(UCSB)化学工程、材料和化学实验小组的紧密结合,接触到更广泛的软材料学科。从提议的项目中获得的知识将通过UCSB的复杂流体设计联盟得到利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于商业相关聚合物配方的计算设计。所有参与者将为加州大学伯克利分校材料研究科学和工程中心充满活力的教育和推广计划做出贡献。技术总结该奖项支持理论和计算,以及促进聚合物材料理论和建模的教育。该项目将增强场论模拟(FTS)方法的能力,允许对聚合物和软材料的场论模型进行数值研究,而无需求助于平均场近似。一个项目组成部分基于相干态聚合物场理论为FTS建立了一个新的平台,相干态聚合物场理论是受量子场论启发而长期被忽视的相互作用聚合物的表示。这项拟议的工作旨在开发和优化相干态模型的模拟算法,并将这些算法应用于可逆键的超分子聚合物的基础研究。本课程将探讨成键平衡常数、化学计量比和聚合物结构等变量与自组装行为和热力学性质之间的关系。相干态框架的独特结构将为FTS中系统的粗粒化提供一种新的力匹配方案,适用于超分子和非反应聚合物体系。拟议研究的另一个组成部分是开发一种工作流程,在该工作流程中,使用相对熵最小化将全原子粒子模型映射到粗粒度粒子模型;后一种模型的形式允许分析转换为完全参数化场理论。然后,FTS可以用来访问与聚合物的基本化学直接相关的中尺度结构和热力学性质。拟议研究的更广泛影响包括项目人员在理论和计算聚合物科学方面的研究生、本科生和博士后培训。注重理论的学生将通过与加州大学圣巴巴拉分校(UCSB)化学工程、材料和化学实验小组的紧密结合,接触到更广泛的软材料学科。从提议的项目中获得的知识将通过UCSB的复杂流体设计联盟得到利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于商业相关聚合物配方的计算设计。该项目所针对的从全原子到FTS的工作流程有可能彻底改变此类配方的硅胶设计。所有参与者都将为加州大学伯克利分校材料研究、科学和工程中心充满活力的教育和推广计划做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting surfactant phase behavior with a molecularly informed field theory
用分子信息场理论预测表面活性剂相行为
- DOI:10.1016/j.jcis.2023.01.015
- 发表时间:2023
- 期刊:
- 影响因子:9.9
- 作者:Shen, Kevin;Nguyen, My;Sherck, Nicholas;Yoo, Brian;Köhler, Stephan;Speros, Joshua;Delaney, Kris T.;Shell, M. Scott;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
Modeling Microstructure Formation in Block Copolymer Membranes Using Dynamical Self-Consistent Field Theory
- DOI:10.1021/acsmacrolett.2c00611
- 发表时间:2022-12-15
- 期刊:
- 影响因子:7.015
- 作者:Grzetic, Douglas J.;Cooper, Anthony J.;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
Quantitative Comparison of Field-Update Algorithms for Polymer SCFT and FTS
- DOI:10.1021/acs.macromol.1c01804
- 发表时间:2021-10
- 期刊:
- 影响因子:5.5
- 作者:Daniel L. Vigil;K. Delaney;G. Fredrickson
- 通讯作者:Daniel L. Vigil;K. Delaney;G. Fredrickson
Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model
从分子信息场论模型预测聚电解质凝聚
- DOI:10.1021/acs.macromol.2c01759
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:Nguyen, My;Sherck, Nicholas;Shen, Kevin;Edwards, Chelsea E.;Yoo, Brian;Köhler, Stephan;Speros, Joshua C.;Helgeson, Matthew E.;Delaney, Kris T.;Shell, M. Scott
- 通讯作者:Shell, M. Scott
A phase field model for dynamic simulations of reactive blending of polymers
聚合物反应共混动态模拟的相场模型
- DOI:10.1039/d1sm01686e
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Tikekar, Mukul D.;Delaney, Kris T.;Villet, Michael C.;Tree, Douglas R.;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Fredrickson其他文献
Glenn Fredrickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Fredrickson', 18)}}的其他基金
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Computationally-Driven Design of Advanced Block Polymer Nanomaterials
DMREF:协作研究:先进嵌段聚合物纳米材料的计算驱动设计
- 批准号:
1725414 - 财政年份:2017
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Computational Polymer Field Theory: Revisiting the Sign Problem
计算聚合物场论:重新审视符号问题
- 批准号:
1506008 - 财政年份:2015
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
- 批准号:
1332842 - 财政年份:2013
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Workshop on Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
理论和计算高分子材料和软物质机遇研讨会
- 批准号:
1344297 - 财政年份:2013
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Methods and Applications of Computational Polymer Field Theory
计算聚合物场论的方法与应用
- 批准号:
1160895 - 财政年份:2012
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
- 批准号:
0904499 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Fundamentals and Applications
场论聚合物模拟:基础知识和应用
- 批准号:
0603710 - 财政年份:2006
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Theoretical Studies of Inhomogeneous Polymers
非均相聚合物的理论研究
- 批准号:
0312097 - 财政年份:2003
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
NER: Computational Design of Nanostructured Complex Fluid Formulations: A Feasibility Study
NER:纳米结构复杂流体配方的计算设计:可行性研究
- 批准号:
0304596 - 财政年份:2003
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Field-theoretic simulations with excluded volume correlations
排除体积相关性的场论模拟
- 批准号:
1410246 - 财政年份:2014
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Graph Theoretic Approaches to Quantum Monte Carlo Simulations of Lattice Fermions
格子费米子量子蒙特卡罗模拟的图论方法
- 批准号:
448538-2013 - 财政年份:2013
- 资助金额:
$ 62.47万 - 项目类别:
University Undergraduate Student Research Awards
AF: Medium: Collaborative Research: Integral-Equation-Based Fast Algorithms and Graph-Theoretic Methods for Large-Scale Simulations
AF:中:协作研究:用于大规模仿真的基于积分方程的快速算法和图论方法
- 批准号:
0905164 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
- 批准号:
0904499 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Integral-Equation-Based Fast Algorithms and Graph-Theoretic Methods for Large-Scale Simulations
AF:中:协作研究:用于大规模仿真的基于积分方程的快速算法和图论方法
- 批准号:
0905395 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Integral-Equation-Based Fast Algorithms and Graph-Theoretic Methods for Large-Scale Simulations
AF:中:协作研究:用于大规模仿真的基于积分方程的快速算法和图论方法
- 批准号:
0905473 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant