Harmonic Analysis and Homogenization of Partial Differential Equations
偏微分方程的调和分析与齐次化
基本信息
- 批准号:1161154
- 负责人:
- 金额:$ 19.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns elliptic partial differential equations and systems with rapidly oscillating periodic coefficients, which arise in the theory of homogenization. Shen and his collaborators will focus on several challenging problems in the area. Resolution of these problems will provide better understanding of some fundamental issues in homogenization, including uniform sharp regularity estimates and rates of convergence of solutions of boundary value problems, asymptotic behavior of eigenvalues and uniform estimates of eigenfunctions, boundary layer phenomenon, and uniform controllability and stabilization for distributed systems. Elliptic equations with periodic coefficients are considered as a model case in homogenization. New techniques and approaches developed for this case will be useful in studying homogenization in other important settings, such as non-uniformly oscillating coefficients, almost periodic coefficients, perforated domains, and evolution operators with highly oscillating coefficients. The proposed research lies at the interface of harmonic analysis and partial differential equations. Existing and new techniques from harmonic analysis are expected to play a significant role in the development. Partial differential equations with rapidly oscillating coefficients are used to describe various processes in materials with rapidly oscillating microstructures, such as composite and perforated materials. The theory of homogenization shows that such materials may be approximately described via a homogenized or effective homogeneous material. As such the theory of homogenization of partial differential equations with rapidly oscillating coefficients has many important applications in physics, mechanics, and modern technology. The proposed research will develop new methods and techniques that will provide theoretical foundation and guidance for numerical simulations in strongly inhomogeneous materials. The findings from the research will be disseminated in the scientific community by Shen and his collaborators through lectures in conferences, workshops, and graduate courses as well as publishing in mathematical journals and websites. Shen is committed to the training of future generations of mathematicians; graduate students and junior researchers will be involved on the project.
这个项目涉及椭圆型偏微分方程和系统与快速振荡的周期系数,这出现在理论的均匀化。沈和他的合作者将专注于该领域的几个具有挑战性的问题。这些问题的解决将有助于更好地理解均匀化中的一些基本问题,包括边值问题解的一致尖锐正则性估计和收敛速度,特征值的渐近行为和特征函数的一致估计,边界层现象,以及分布式系统的一致可控性和稳定性。周期系数的椭圆方程被认为是均匀化的一个模型。为这种情况下开发的新技术和方法将是有用的,在研究均匀化在其他重要的设置,如非均匀振荡系数,几乎周期系数,穿孔域,并与高振荡系数的演化算子。该研究处于调和分析和偏微分方程的交叉点。谐波分析的现有技术和新技术预计将在发展中发挥重要作用。具有快速振荡系数的偏微分方程用于描述具有快速振荡微结构的材料(如复合材料和穿孔材料)中的各种过程。均匀化理论表明,这种材料可以近似地通过均匀化或有效均匀材料来描述。因此,具有快速振荡系数的偏微分方程的均匀化理论在物理学、力学和现代技术中有许多重要的应用。该研究将为强非均匀材料的数值模拟提供理论基础和指导。研究结果将由沉和他的合作者通过会议,研讨会和研究生课程的讲座以及在数学期刊和网站上发表在科学界传播。沉致力于培养未来几代数学家;研究生和初级研究人员将参与该项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongwei Shen其他文献
Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA
沉积古DNA揭示了月亮湖(中国东北)工业化前蓝藻的优势
- DOI:
10.1016/j.quascirev.2021.106966 - 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
Jifeng Zhang;Jianbao Liu;Yanli Yuan;Aifeng Zhou;Jie Chen;Zhongwei Shen;Shengqian Chen;Zhiping Zhang;Ke Zhang - 通讯作者:
Ke Zhang
Advanced skeleton-based action recognition via spatial–temporal rotation descriptors
通过空间-时间旋转描述符进行先进的基于骨架的动作识别
- DOI:
10.1007/s10044-020-00952-y - 发表时间:
2021-02 - 期刊:
- 影响因子:3.9
- 作者:
Zhongwei Shen;Xiao-Jun Wu;Josef Kittler - 通讯作者:
Josef Kittler
A Cooperative Routing Protocol Based on Q-Learning for Underwater Optical-Acoustic Hybrid Wireless Sensor Networks
基于Q-Learning的水下光声混合无线传感器网络协作路由协议
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Zhongwei Shen;Hongxi Yin;Hongxi Yin;Yanjun Liang;Jianying Wang - 通讯作者:
Jianying Wang
Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation
末次冰消期以来青藏高原东北部青海湖流域植被变化及人地相互作用
- DOI:
10.1016/j.catena.2021.105892 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Naimeng Zhang;Xianyong Cao;Qinghai Xu;Xiaozhong Huang;Ulrike Herzschuh;Zhongwei Shen;Wei Peng;Sisi Liu;Duo Wu;Jian Wang;Huan Xia;Dongju Zhang;Fahu Chen - 通讯作者:
Fahu Chen
On R-quadratic Finsler spaces
- DOI:
10.5486/pmd.2001.2397 - 发表时间:
2001-01 - 期刊:
- 影响因子:0.6
- 作者:
Zhongwei Shen - 通讯作者:
Zhongwei Shen
Zhongwei Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongwei Shen', 18)}}的其他基金
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
- 批准号:
1856235 - 财政年份:2019
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
- 批准号:
1600520 - 财政年份:2016
- 资助金额:
$ 19.34万 - 项目类别:
Continuing Grant
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
- 批准号:
0855294 - 财政年份:2009
- 资助金额:
$ 19.34万 - 项目类别:
Continuing Grant
Elliptic Boundary Value Problems in Non-Smooth Domains
非光滑域中的椭圆边值问题
- 批准号:
0500257 - 财政年份:2005
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Harmonic Analysis and Problems in Mathematical Physics
数学物理中的调和分析与问题
- 批准号:
9732894 - 财政年份:1998
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9596266 - 财政年份:1995
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9500635 - 财政年份:1995
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations in Nonsmooth Domains
数学科学:非光滑域中的偏微分方程
- 批准号:
9201208 - 财政年份:1992
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Developments of Homogenization Techniques of Soft Magnetic Composite in Magnetic Field Analysis and Design of Design of Small High Frequency Reactor
软磁复合材料均匀化技术在小型高频电抗器磁场分析与设计中的进展
- 批准号:
19K04354 - 财政年份:2019
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
- 批准号:
1856235 - 财政年份:2019
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Improvements to the homogenization of brain samples prior to extraction and UHPLC-MS/MS analysis
提取和 UHPLC-MS/MS 分析之前脑样本均质化的改进
- 批准号:
488278-2015 - 财政年份:2016
- 资助金额:
$ 19.34万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Stochastic homogenization for uncertainty quantification in multiscale analysis
多尺度分析中不确定性量化的随机均质化
- 批准号:
16KT0129 - 财政年份:2016
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
- 批准号:
1600520 - 财政年份:2016
- 资助金额:
$ 19.34万 - 项目类别:
Continuing Grant
Development of new homogenization method for efficient electromagnetic analysis and its application
高效电磁分析均化新方法的开发及其应用
- 批准号:
26420233 - 财政年份:2014
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
- 批准号:
0855294 - 财政年份:2009
- 资助金额:
$ 19.34万 - 项目类别:
Continuing Grant
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
- 批准号:
19360048 - 财政年份:2007
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)