Elliptic Boundary Value Problems in Non-Smooth Domains
非光滑域中的椭圆边值问题
基本信息
- 批准号:0500257
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elliptic Boundary value problems in non-smooth domains.Abstract of proposed researchZhongwei ShenThis research project centers on problems in the area of partial differential equations in domains with non-smooth boundaries. The PI will study the solvability of boundary value problems on the class of bounded Lipschitz domains. This is a dilation-invariant class of domains which have boundaries that are the graphs of Lipschitz functions. The main focus will be on boundary value problems for second order elliptic systems and higher-order elliptic equations with Lp boundary data. He will also investigate boundary value problems in convex domains.This research lies at the interface of harmonic analysis and partial differential equations.The goal of the project is to establish useful regularity estimates for solutions under physically realistic assumptions on the domain as well as on the boundary data. In many applied problems of elasticity, aero- and hydrodynamics and electro-magnetic wave scattering, the boundary value problems for the governing equations are posed in domains with rough boundaries. The results of this project will provide some mathematical foundations and analytical tools for these applications.
非光滑区域上的椭圆型边值问题。研究摘要沈中伟本研究项目主要研究具有非光滑边界的区域上的偏微分方程组问题。PI将研究一类有界Lipschitz区域上边值问题的可解性。这是一类伸缩不变的区域,其边界是Lipschitz函数的图形。主要集中在具有Lp边界数据的二阶椭圆组和高阶椭圆型方程边值问题。他还将研究凸域中的边值问题。这项研究位于调和分析和偏微分方程组的交界处。该项目的目标是在区域和边界数据的物理现实假设下建立解的有用的正则性估计。在弹性力学、空气动力学、流体力学和电磁波散射等许多应用问题中,控制方程的边值问题都是在具有粗糙边界的区域中提出的。该项目的结果将为这些应用提供一些数学基础和分析工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongwei Shen其他文献
Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains
- DOI:
10.1353/ajm.2003.0035 - 发表时间:
2003-09 - 期刊:
- 影响因子:1.7
- 作者:
Zhongwei Shen - 通讯作者:
Zhongwei Shen
Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation
末次冰消期以来青藏高原东北部青海湖流域植被变化及人地相互作用
- DOI:
10.1016/j.catena.2021.105892 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Naimeng Zhang;Xianyong Cao;Qinghai Xu;Xiaozhong Huang;Ulrike Herzschuh;Zhongwei Shen;Wei Peng;Sisi Liu;Duo Wu;Jian Wang;Huan Xia;Dongju Zhang;Fahu Chen - 通讯作者:
Fahu Chen
A Cooperative Routing Protocol Based on Q-Learning for Underwater Optical-Acoustic Hybrid Wireless Sensor Networks
基于Q-Learning的水下光声混合无线传感器网络协作路由协议
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Zhongwei Shen;Hongxi Yin;Hongxi Yin;Yanjun Liang;Jianying Wang - 通讯作者:
Jianying Wang
Advanced skeleton-based action recognition via spatial–temporal rotation descriptors
通过空间-时间旋转描述符进行先进的基于骨架的动作识别
- DOI:
10.1007/s10044-020-00952-y - 发表时间:
2021-02 - 期刊:
- 影响因子:3.9
- 作者:
Zhongwei Shen;Xiao-Jun Wu;Josef Kittler - 通讯作者:
Josef Kittler
Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA
沉积古DNA揭示了月亮湖(中国东北)工业化前蓝藻的优势
- DOI:
10.1016/j.quascirev.2021.106966 - 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
Jifeng Zhang;Jianbao Liu;Yanli Yuan;Aifeng Zhou;Jie Chen;Zhongwei Shen;Shengqian Chen;Zhiping Zhang;Ke Zhang - 通讯作者:
Ke Zhang
Zhongwei Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongwei Shen', 18)}}的其他基金
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
- 批准号:
1856235 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
- 批准号:
1600520 - 财政年份:2016
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Harmonic Analysis and Homogenization of Partial Differential Equations
偏微分方程的调和分析与齐次化
- 批准号:
1161154 - 财政年份:2012
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
- 批准号:
0855294 - 财政年份:2009
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Harmonic Analysis and Problems in Mathematical Physics
数学物理中的调和分析与问题
- 批准号:
9732894 - 财政年份:1998
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9596266 - 财政年份:1995
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9500635 - 财政年份:1995
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations in Nonsmooth Domains
数学科学:非光滑域中的偏微分方程
- 批准号:
9201208 - 财政年份:1992
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parabolic methods for elliptic boundary value problems
椭圆边值问题的抛物线方法
- 批准号:
DP180100431 - 财政年份:2018
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Projects
Study on the bifurcation structure of positive solutions for concave-convex mixed nonlinear elliptic boundary value problems with indefinite weights
不定权凹凸混合非线性椭圆边值问题正解的分岔结构研究
- 批准号:
15K04945 - 财政年份:2015
- 资助金额:
$ 7.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Theory of Elliptic Boundary Value Problems
椭圆边值问题理论专题
- 批准号:
1458138 - 财政年份:2014
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
- 批准号:
EP/J017450/1 - 财政年份:2012
- 资助金额:
$ 7.2万 - 项目类别:
Research Grant
Topics in the Theory of Elliptic Boundary Value Problems
椭圆边值问题理论专题
- 批准号:
1201104 - 财政年份:2012
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Optimal preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems
椭圆边值问题谱间断Galerkin方法的最优预处理器
- 批准号:
218348188 - 财政年份:2012
- 资助金额:
$ 7.2万 - 项目类别:
Research Grants
Bifurcation analysis for nonlinear elliptic boundary value problems with combined nonlinearity of absorption and blowing up effects arising in population dynamics
群体动力学中吸收和爆炸效应组合非线性的非线性椭圆边值问题的分岔分析
- 批准号:
22540170 - 财政年份:2010
- 资助金额:
$ 7.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elliptic Boundary Value Problems, Harmonic Analysis and Spectral Theory
椭圆边值问题、调和分析和谱理论
- 批准号:
0758500 - 财政年份:2008
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant