Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
基本信息
- 批准号:1856235
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial differential equations with rapidly oscillating coefficients are used to describe various processes in materials with rapidly oscillating microstructures, such as composite and perforated materials. The theory of homogenization, whose goal is to describe the macroscopic properties of microscopically inhomogeneous or heterogeneous materials, shows that such strongly inhomogeneous material, whose characteristics change sharply with respect to space variables, may be approximately described via a homogenized or effective homogeneous material. As a result, the theory of homogenization of partial differential equations with rapidly oscillating coefficients has many important applications in physics, mechanics, and materials science. The long-term goal of this project is to establish optimal quantitative results in the homogenization theory for a large class of partial differential equations in various settings, arising in applications. The proposed research focuses on several challenging problems in the area and will develop new approaches and techniques. The results will provide theoretical foundation and guidance for numerical simulations in strongly inhomogeneous materials.The Principal Investigator proposes to continue his ongoing research program on quantitative homogenization of partial differential equations. The main focus of this project will be on large-scale geometric and regularity properties and convergence rates for second-order elliptic and parabolic equations. More specifically, the problems to be investigated include (1) large-scale geometric properties of elliptic equations with periodic coefficients; (2) quantitative homogenization of parabolic systems with time-dependent periodic coefficients; (3) quantitative homogenization of quasi-linear elliptic equations; (4) homogenization of boundary value problems in non-smooth domains; and (5) large-scale regularity estimates in perforated domains. The proposed research lies at the interface of harmonic analysis and partial differential equations. Existing and new techniques from harmonic analysis are expected to play a significant role in the development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有快速振荡系数的偏微分方程组被用来描述具有快速振荡微结构的材料中的各种过程,例如复合材料和穿孔材料。以描述微观非均质或非均质材料宏观性质为目标的均匀化理论表明,这种性质随空间变量急剧变化的强非均质材料可以近似地用一种均匀或有效的均质材料来描述。因此,具有快速振荡系数的偏微分方程齐化理论在物理、力学和材料科学中有着重要的应用。这个项目的长期目标是在齐次化理论中为一大类在不同环境下产生的应用中出现的偏微分方程建立最优的定量结果。拟议的研究侧重于该领域的几个具有挑战性的问题,并将开发新的方法和技术。这一结果将为强非均匀材料的数值模拟提供理论基础和指导。首席研究员建议继续他正在进行的偏微分方程组定量齐次化的研究计划。这个项目的主要焦点将是研究二阶椭圆型和抛物型方程的大规模几何和正则性以及收敛速度。更具体地说,要研究的问题包括:(1)周期系数椭圆型方程的大规模几何性质;(2)周期系数含时抛物型方程的定量齐次化;(3)拟线性椭圆型方程的定量齐次化;(4)非光滑区域上边值问题的齐次化;以及(5)穿孔区域上的大规模正则性估计。所提出的研究位于调和分析和偏微分方程组的交界处。来自谐波分析的现有和新技术预计将在发展中发挥重要作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compactness and large-scale regularity for Darcy's law
达西定律的紧致性和大尺度正则性
- DOI:10.1016/j.matpur.2022.05.019
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shen, Zhongwei
- 通讯作者:Shen, Zhongwei
Critical Sets of Elliptic Equations with Rapidly Oscillating Coefficients in Two Dimensions
二维快速振荡系数椭圆方程组临界
- DOI:10.1007/s10013-023-00632-4
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Lin, Fanghua;Shen, Zhongwei
- 通讯作者:Shen, Zhongwei
Large-scale Lipschitz estimates for elliptic systems with periodic high-contrast coefficients
具有周期性高对比度系数的椭圆系统的大规模 Lipschitz 估计
- DOI:10.1080/03605302.2020.1858098
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Shen, Zhongwei
- 通讯作者:Shen, Zhongwei
Combined effects of homogenization and singular perturbations: Quantitative estimates
- DOI:10.3233/asy-211709
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Weisheng Niu;Zhongwei Shen
- 通讯作者:Weisheng Niu;Zhongwei Shen
Sharp convergence rates for Darcy’s law
- DOI:10.1080/03605302.2022.2037634
- 发表时间:2020-11
- 期刊:
- 影响因子:1.9
- 作者:Zhongwei Shen
- 通讯作者:Zhongwei Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongwei Shen其他文献
Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains
- DOI:
10.1353/ajm.2003.0035 - 发表时间:
2003-09 - 期刊:
- 影响因子:1.7
- 作者:
Zhongwei Shen - 通讯作者:
Zhongwei Shen
Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation
末次冰消期以来青藏高原东北部青海湖流域植被变化及人地相互作用
- DOI:
10.1016/j.catena.2021.105892 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Naimeng Zhang;Xianyong Cao;Qinghai Xu;Xiaozhong Huang;Ulrike Herzschuh;Zhongwei Shen;Wei Peng;Sisi Liu;Duo Wu;Jian Wang;Huan Xia;Dongju Zhang;Fahu Chen - 通讯作者:
Fahu Chen
A Cooperative Routing Protocol Based on Q-Learning for Underwater Optical-Acoustic Hybrid Wireless Sensor Networks
基于Q-Learning的水下光声混合无线传感器网络协作路由协议
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Zhongwei Shen;Hongxi Yin;Hongxi Yin;Yanjun Liang;Jianying Wang - 通讯作者:
Jianying Wang
Advanced skeleton-based action recognition via spatial–temporal rotation descriptors
通过空间-时间旋转描述符进行先进的基于骨架的动作识别
- DOI:
10.1007/s10044-020-00952-y - 发表时间:
2021-02 - 期刊:
- 影响因子:3.9
- 作者:
Zhongwei Shen;Xiao-Jun Wu;Josef Kittler - 通讯作者:
Josef Kittler
Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA
沉积古DNA揭示了月亮湖(中国东北)工业化前蓝藻的优势
- DOI:
10.1016/j.quascirev.2021.106966 - 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
Jifeng Zhang;Jianbao Liu;Yanli Yuan;Aifeng Zhou;Jie Chen;Zhongwei Shen;Shengqian Chen;Zhiping Zhang;Ke Zhang - 通讯作者:
Ke Zhang
Zhongwei Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongwei Shen', 18)}}的其他基金
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
- 批准号:
1600520 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Harmonic Analysis and Homogenization of Partial Differential Equations
偏微分方程的调和分析与齐次化
- 批准号:
1161154 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
- 批准号:
0855294 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Elliptic Boundary Value Problems in Non-Smooth Domains
非光滑域中的椭圆边值问题
- 批准号:
0500257 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Harmonic Analysis and Problems in Mathematical Physics
数学物理中的调和分析与问题
- 批准号:
9732894 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9596266 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
- 批准号:
9500635 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations in Nonsmooth Domains
数学科学:非光滑域中的偏微分方程
- 批准号:
9201208 - 财政年份:1992
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical analysis of time periodic Schroedinger equations
时间周期薛定谔方程的数学分析
- 批准号:
23K03187 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new sedation monitor that applies AI analysis of periodic respiratory waveforms and changes in the patient's nasal blood flow
开发新型镇静监测仪,应用人工智能分析周期性呼吸波形和患者鼻血流量的变化
- 批准号:
22K10122 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidation of molecular mechanism of TNF receptor-associated periodic syndrome by cell technology and multi-omics analysis
利用细胞技术和多组学分析阐明TNF受体相关周期性综合征的分子机制
- 批准号:
19K08299 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and analysis of the gene responsible for periodic strabismus
周期性斜视基因的鉴定和分析
- 批准号:
19K10004 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Unitied Kingdom and the Universal Periodic Review: An analysis of the translation of multilateral recommendations into domestic legal change
英国与普遍定期审议:多边建议转化为国内法律变革的分析
- 批准号:
2286193 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Studentship
Iterative Methods in Analysis of Periodic and Almost Periodic Structures in Quantum Mechanics
量子力学中周期性和准周期性结构分析的迭代方法
- 批准号:
1814664 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
- 批准号:
1700279 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
OP: Mathematical Analysis of Nonlinear Optics in Periodic and Complex Media
OP:周期性和复杂介质中非线性光学的数学分析
- 批准号:
1616122 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant