Some topics in time-frequency analysis
时频分析的一些主题
基本信息
- 批准号:1200932
- 负责人:
- 金额:$ 14.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lie and his collaborators will investigate a number of problems that lie at the interface of time-frequency analysis and other areas of mathematics such as additive combinatorics, geometric measure theory, incidence geometry and partial differential equations. The main objectives for the time-frequency analysis-themed problems in this project are (a), to develop a satisfactory generalized wave packet theory and (b), to develop the proper environment for the time - frequency analysis in higher dimensions. One step in the first direction was taken by the PI in his Ph.D. thesis, where he introduced a new perspective on the generalized wave packet theory which later proved beneficial in proving the boundedness of the Polynomial Carleson operator in dimension one. Some of these techniques appear to be applicable to the study of the boundedness of the maximal Schrodinger operator in dimension one. The PI and his collaborators will investigate several other problems, including: boundedness of the Bilinear Hilbert transform along curves; boundedness of the higher dimensional version of the Polynomial Carleson operator; pointwise convergence of the solution to the free Schrodinger equation in higher dimensions; convergence of the subsequences of sequences of partial Fourier sums. This mathematics research project investigates various problems in harmonic analysis, which is an area of mathematics that has important applications to problems that arise in other sciences, such as pattern recognition in computer graphics; electrical charges distribution in physics; wave propagation in seismology. The techniques to be employed will bridge several areas of mathematics, including partial differential equations, incidence geometry, and additive combinatorics. The resulting synergies will enrich the arsenal of analytical tools and available techniques; these will be presented in graduate seminars designed with the specific purpose to attract students and young researchers to this dynamic area of mathematics and its applications.
李和他的合作者将研究时频分析和其他数学领域的一些问题,如加法组合学、几何测度论、关联几何和偏微分方程。本项目中以时频分析为主题的问题的主要目标是(A)发展一个令人满意的广义波包理论和(B)为更高维度的时频分析开发合适的环境。PI在他的博士论文中朝第一个方向迈出了一步,在那里他引入了一种关于广义波包理论的新观点,该理论后来被证明对证明多项式Carleson算子在一维有界性是有益的。其中一些技巧似乎适用于研究一维极大薛定谔算子的有界性。PI和他的合作者将研究其他几个问题,包括:双线性希尔伯特变换沿曲线的有界性;多项式Carleson算子的高维版本的有界性;高维自由薛定谔方程解的逐点收敛;部分傅立叶和序列的子序列的收敛。这个数学研究项目研究了调和分析中的各种问题,这是一个对其他科学中出现的问题有重要应用的数学领域,如计算机图形学中的模式识别;物理学中的电荷分布;地震学中的波传播。将使用的技术将跨越数学的几个领域,包括偏微分方程式、入射几何和加法组合学。由此产生的协同作用将丰富分析工具和现有技术的武器库;这些将在专门为吸引学生和年轻研究人员进入这一充满活力的数学及其应用领域而设计的研究生研讨会上介绍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Lie其他文献
Non-zero to zero curvature transition: Operators along hybrid curves with no quadratic (quasi-)resonances
从零到零曲率的转变:沿着没有二次(准)共振的混合曲线的算符
- DOI:
10.1016/j.aim.2025.110356 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:1.500
- 作者:
Alejandra Gaitan;Victor Lie - 通讯作者:
Victor Lie
Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity
具有涡度的 3D 单流体欧拉-麦克斯韦系统的长期规律性
- DOI:
10.1016/j.aim.2017.11.027 - 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
A. Ionescu;Victor Lie - 通讯作者:
Victor Lie
On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves
关于双线性希尔伯特变换沿“非平坦”光滑曲线的有界性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Victor Lie - 通讯作者:
Victor Lie
A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves (II) Carleson type operators in the presence of curvature
调和分析中三个主题的统一方法(I 和 II):(I)沿可变曲线的线性希尔伯特变换和极大算子(II)存在曲率时的卡尔松型算子
- DOI:
10.1016/j.aim.2023.109385 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Victor Lie - 通讯作者:
Victor Lie
The pointwise convergence of Fourier Series (II). Strong L1 case for the lacunary Carleson operator
- DOI:
10.1016/j.aim.2019.106831 - 发表时间:
2019-02 - 期刊:
- 影响因子:1.7
- 作者:
Victor Lie - 通讯作者:
Victor Lie
Victor Lie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Lie', 18)}}的其他基金
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
- 批准号:
1900801 - 财政年份:2019
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Topics in Harmonic Analysis: Interplay between Time-Frequency Analysis, Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析、加法组合学和偏微分方程之间的相互作用
- 批准号:
1500958 - 财政年份:2015
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Some topics in time-frequency analysis
时频分析的一些主题
- 批准号:
1449514 - 财政年份:2013
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
相似海外基金
SMART POR: Supporting and Mentoring Across Respiratory Topics in Patient Oriented Research
SMART POR:支持和指导以患者为导向的研究中的呼吸主题
- 批准号:
10591121 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
$ 14.2万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2021
- 资助金额:
$ 14.2万 - 项目类别:
Discovery Grants Program - Individual
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
- 批准号:
21J00460 - 财政年份:2021
- 资助金额:
$ 14.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Prisms, a novel immersive learning platform to increase proficiency on bottleneck topics in secondary STEM
Prisms,一种新颖的沉浸式学习平台,可提高中学 STEM 瓶颈主题的熟练程度
- 批准号:
10252740 - 财政年份:2021
- 资助金额:
$ 14.2万 - 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2020
- 资助金额:
$ 14.2万 - 项目类别:
Discovery Grants Program - Individual
Tensors, Topics, Truth, and Time: Methods for Real Tensor Applications
张量、主题、真相和时间:实张量应用的方法
- 批准号:
2011140 - 财政年份:2020
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
A multimedia toolkit for teaching environmental health literacy topics related to Superfund sites
用于教授与超级基金网站相关的环境健康素养主题的多媒体工具包
- 批准号:
9912551 - 财政年份:2020
- 资助金额:
$ 14.2万 - 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2019
- 资助金额:
$ 14.2万 - 项目类别:
Discovery Grants Program - Individual
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
- 批准号:
1900801 - 财政年份:2019
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant