Some topics in time-frequency analysis

时频分析的一些主题

基本信息

  • 批准号:
    1449514
  • 负责人:
  • 金额:
    $ 6.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-13 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Lie and his collaborators will investigate a number of problems that lie at the interface of time-frequency analysis and other areas of mathematics such as additive combinatorics, geometric measure theory, incidence geometry and partial differential equations. The main objectives for the time-frequency analysis-themed problems in this project are (a), to develop a satisfactory generalized wave packet theory and (b), to develop the proper environment for the time - frequency analysis in higher dimensions. One step in the first direction was taken by the PI in his Ph.D. thesis, where he introduced a new perspective on the generalized wave packet theory which later proved beneficial in proving the boundedness of the Polynomial Carleson operator in dimension one. Some of these techniques appear to be applicable to the study of the boundedness of the maximal Schrodinger operator in dimension one. The PI and his collaborators will investigate several other problems, including: boundedness of the Bilinear Hilbert transform along curves; boundedness of the higher dimensional version of the Polynomial Carleson operator; pointwise convergence of the solution to the free Schrodinger equation in higher dimensions; convergence of the subsequences of sequences of partial Fourier sums. This mathematics research project investigates various problems in harmonic analysis, which is an area of mathematics that has important applications to problems that arise in other sciences, such as pattern recognition in computer graphics; electrical charges distribution in physics; wave propagation in seismology. The techniques to be employed will bridge several areas of mathematics, including partial differential equations, incidence geometry, and additive combinatorics. The resulting synergies will enrich the arsenal of analytical tools and available techniques; these will be presented in graduate seminars designed with the specific purpose to attract students and young researchers to this dynamic area of mathematics and its applications.
Lie和他的合作者将研究一些问题,这些问题位于时频分析和其他数学领域的接口,如加法组合学,几何测度理论,关联几何和偏微分方程。 在这个项目中,时频分析主题问题的主要目标是(a),发展一个令人满意的广义波包理论和(B),发展适当的环境,在更高的维度时频分析。在第一个方向上的一个步骤是由PI在他的博士学位。论文,在那里他介绍了一个新的角度对广义波包理论,后来证明有利于证明有界的多项式Carleson运营商在一个维度。 其中一些技术似乎是适用于研究的最大薛定谔算子在一维的有界性。 PI和他的合作者将调查其他几个问题,包括:有界的双线性希尔伯特变换沿着曲线;有界的高维版本的多项式Carleson运营商;逐点收敛的解决方案,以自由薛定谔方程在高维;收敛序列的部分傅立叶和。这个数学研究项目调查谐波分析中的各种问题,谐波分析是数学领域,对其他科学中出现的问题具有重要应用,例如计算机图形学中的模式识别;物理学中的电荷分布;地震学中的波传播。所采用的技术将连接数学的多个领域,包括偏微分方程、关联几何和加法组合学。由此产生的协同作用将丰富分析工具和可用技术的武库;这些将在研究生研讨会上提出,旨在吸引学生和年轻研究人员到数学及其应用的这一动态领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Lie其他文献

Non-zero to zero curvature transition: Operators along hybrid curves with no quadratic (quasi-)resonances
从零到零曲率的转变:沿着没有二次(准)共振的混合曲线的算符
  • DOI:
    10.1016/j.aim.2025.110356
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Alejandra Gaitan;Victor Lie
  • 通讯作者:
    Victor Lie
Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity
具有涡度的 3D 单流体欧拉-麦克斯韦系统的长期规律性
  • DOI:
    10.1016/j.aim.2017.11.027
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. Ionescu;Victor Lie
  • 通讯作者:
    Victor Lie
On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves
关于双线性希尔伯特变换沿“非平坦”光滑曲线的有界性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie
A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves (II) Carleson type operators in the presence of curvature
调和分析中三个主题的统一方法(I 和 II):(I)沿可变曲线的线性希尔伯特变换和极大算子(II)存在曲率时的卡尔松型算子
  • DOI:
    10.1016/j.aim.2023.109385
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie
The pointwise convergence of Fourier Series (II). Strong L1 case for the lacunary Carleson operator
  • DOI:
    10.1016/j.aim.2019.106831
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie

Victor Lie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Lie', 18)}}的其他基金

Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
  • 批准号:
    1900801
  • 财政年份:
    2019
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis: Interplay between Time-Frequency Analysis, Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析、加法组合学和偏微分方程之间的相互作用
  • 批准号:
    1500958
  • 财政年份:
    2015
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
Some topics in time-frequency analysis
时频分析的一些主题
  • 批准号:
    1200932
  • 财政年份:
    2012
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant

相似海外基金

SMART POR: Supporting and Mentoring Across Respiratory Topics in Patient Oriented Research
SMART POR:支持和指导以患者为导向的研究中的呼吸主题
  • 批准号:
    10591121
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2021
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Discovery Grants Program - Individual
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
  • 批准号:
    21J00460
  • 财政年份:
    2021
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Prisms, a novel immersive learning platform to increase proficiency on bottleneck topics in secondary STEM
Prisms,一种新颖的沉浸式学习平台,可提高中学 STEM 瓶颈主题的熟练程度
  • 批准号:
    10252740
  • 财政年份:
    2021
  • 资助金额:
    $ 6.71万
  • 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2020
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Discovery Grants Program - Individual
Tensors, Topics, Truth, and Time: Methods for Real Tensor Applications
张量、主题、真相和时间:实张量应用的方法
  • 批准号:
    2011140
  • 财政年份:
    2020
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
A multimedia toolkit for teaching environmental health literacy topics related to Superfund sites
用于教授与超级基金网站相关的环境健康素养主题的多媒体工具包
  • 批准号:
    9912551
  • 财政年份:
    2020
  • 资助金额:
    $ 6.71万
  • 项目类别:
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2019
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
  • 批准号:
    1900801
  • 财政年份:
    2019
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了