Variational Problems and Dynamics

变分问题和动力学

基本信息

  • 批准号:
    1201354
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The proposed research program is focused on the interplay of dynamics and variational problems, with a special emphasis on quantitative stability estimates for sharp geometric inequalities. Such estimates and inequalities provide an effective means to derive properties of solutions of evolution equations and likewise, evolution equations can be used to derive variational inequalities. Exploiting this interplay has been very fruitful in the past work of the investigator, who plans to approach various problems in this framework. One is to prove new sharp non-local version of the Gagliardo-Nirenberg-Sobolev inequalities that arise in connection with the fast diffusion equation and porous medium equation. Such equations arise in the modeling of many phenomena, physical to biological, and the analytic problems to be investigated are chosen for their potential broader impact as well their intrinsic analytic interest. Another such problem concerns quantitiative stability for the Brun-Minkowski inequality and its application in the study of phase transitions. A similar philosophy applies as well to certain problems in kinetic theory, where the plan is to derive quantitative estimates on speed of approach to equilibrium for some inhomogeneous master equations of Kac type that have recently been used to model not only physical phenomena, but also phenomena in population biology.Many phenomena in science and technology can be modeled by evolution equations. One example that is the object of research in this proposal is the Keller Segel system, which models the aggregation, or the absence thereof, in the motion of bacteria. Understanding the behavior of solutions of these equations is both biologically and mathematically interesting. In particular, it is often observed that systems of many interacting agents (such as bacteria) or particles, either classical or quantum mechanical, evolve toward an equilibrium, and they do this at a certain speed. Determining the the speed of this process is vital to the understanding of many such models. This proposal concerns research on obtaining themathematical keys to such problems and their application in a broad range of fields. A central focus is solving certain maximization problems, and proving theorems asserting that any input that produces nearly maximal output must be close, in a an appropriate sense, to input that gives the exact maximum. As recent research of the investigator has shown, such theorems provide an effective means to unlock the information in models of the type described above, and the research proposed here will further this progress.
拟议的研究计划的重点是动力学和变分问题的相互作用,特别强调对尖锐的几何不等式的定量稳定性估计。这种估计和不等式提供了一种有效的手段来获得发展方程的解的性质,同样,发展方程可以用来获得变分不等式。调查员计划在这一框架内处理各种问题,在过去的工作中,利用这种相互作用取得了丰硕成果。一是证明了与快扩散方程和多孔介质方程有关的Gagliardo-Nirenberg-Sobolev不等式的新的非局部形式。这些方程出现在许多现象的建模中,从物理到生物,要研究的分析问题是根据其潜在的更广泛的影响以及其内在的分析兴趣来选择的。另一个这样的问题涉及Brun-Minkowski不等式的定量稳定性及其在相变研究中的应用。 类似的哲学也适用于动力学理论中的某些问题,其中计划是对一些Kac型的非齐次主方程的接近平衡的速度进行定量估计,这些主方程最近不仅被用来模拟物理现象,而且还被用来模拟种群生物学中的现象。本提案中研究对象的一个例子是Keller Segel系统,该系统对细菌运动中的聚集或不聚集进行建模。了解这些方程的解的行为在生物学和数学上都很有趣。 特别是,经常观察到许多相互作用的代理(如细菌)或粒子的系统,无论是经典的还是量子力学的,都朝着平衡发展,并且它们以一定的速度这样做。 确定这个过程的速度对于理解许多这样的模型至关重要。这一建议涉及研究如何获得这些问题的数学答案及其在广泛领域中的应用。一个中心焦点是解决某些最大化问题,并证明定理断言,任何输入,产生近最大输出必须接近,在适当的意义上,输入,给出确切的最大值。正如研究者最近的研究所示,这样的定理提供了一种有效的手段来解锁上述类型的模型中的信息,这里提出的研究将进一步推动这一进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Carlen其他文献

Large time behavior of non-symmetric Fokker-Planck type equations
非对称 Fokker-Planck 型方程的大时间行为
Classical and Quantum Mechanical Models of Many-Particle Systems 3 Workshop : Classical and Quantum Mechanical Models of Many-Particle Systems
多粒子系统的经典和量子力学模型3研讨会:多粒子系统的经典和量子力学模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Carlen;Gonca L. Aki;Jean Dolbeault;Christof Sparber;M. Bisi;Yann Brenier;J. Cañizo;José Antonio Carrillo
  • 通讯作者:
    José Antonio Carrillo

Eric Carlen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Carlen', 18)}}的其他基金

Variational Questions, Stability, and Dynamics
变分问题、稳定性和动力学
  • 批准号:
    2055282
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Variational Problems, Stability and Dynamics
变分问题、稳定性和动力学
  • 批准号:
    1764254
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Variational Problems and Dynamics
变分问题和动力学
  • 批准号:
    1501007
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
  • 批准号:
    0901632
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Analysis, Probability, and Logic: A Conference in Honor of Edward Nelson
分析、概率和逻辑:纪念爱德华·纳尔逊的会议
  • 批准号:
    0404763
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
A Relevant Mathematics Curriculum for Today's Science and Engineering Students
适合当今理工科学生的相关数学课程
  • 批准号:
    0410893
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
U.S.-Italy Cooperative Research: Research in Kinetic Theory and Kinetic Models of Hydrodynamic Behavior
美意合作研究:水动力行为的动力学理论和动力学模型研究
  • 批准号:
    9811588
  • 财政年份:
    1999
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
1997 International Conference on Differential Equations and Mathematical Physics; March 23-29, 1997; Birmingham, Alabama
1997年微分方程和数学物理国际会议;
  • 批准号:
    9700676
  • 财政年份:
    1997
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8605701
  • 财政年份:
    1986
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award

相似海外基金

Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
  • 批准号:
    2154578
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Variational Problems, Stability and Dynamics
变分问题、稳定性和动力学
  • 批准号:
    1764254
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
  • 批准号:
    1700202
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Variational Problems and Dynamics
变分问题和动力学
  • 批准号:
    1501007
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
  • 批准号:
    0901304
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
  • 批准号:
    0901632
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Dynamics and Variational Problems
动力学和变分问题
  • 批准号:
    0600037
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Dynamics and Variational Problems
动力学和变分问题
  • 批准号:
    0300349
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Dynamics and Variational Problems
动力学和变分问题
  • 批准号:
    0070589
  • 财政年份:
    2000
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Dynamics and Variational Problems
数学科学:非线性动力学和变分问题
  • 批准号:
    9500840
  • 财政年份:
    1995
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了