Variational Problems, Stability and Dynamics
变分问题、稳定性和动力学
基本信息
- 批准号:1764254
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is aimed at solving mathematical problems that are not only significant as mathematics, but that have been suggested by problems arising in physics, quantum information theory and biology. The analysis of the equations governing physical processes often requires a precise quantitative understanding of the relative sizes of various quantities involved in these processes, and this is provided by mathematical inequalities. An example familiar to the general public can be paraphrased as saying that ``entropy never decreases'' in physical processes; the inequality in question says that the entropy at a later time is at least as large as the entropy at an earlier time. For more specific physical systems one can say much more, and the search for a better understanding of physical processes, and the evolution equations that govern them, is in part a quest for new and more precise mathematical inequalities governing these processes. The connection between mathematical inequalities and physical processes runs both ways, so that in trying to prove such an inequality, one may try to relate it to a simple and well understood evolution equation. This area of research has been fruitful not only in producing results that are of interest to a wider scientific community, but also in engaging the interest of Ph.D. students. The intellectual merit of the research is that it will produce not only significant new mathematics, but results that are relevant to the physical sciences and engineering as well. This applicability in other fields guarantee a broad impact of the work, which is further enhanced by the involvement of students, contributing to training of the next generation of researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在解决不仅具有数学意义的数学问题,而且还涉及物理学、量子信息论和生物学中出现的问题。对控制物理过程的方程的分析通常需要对这些过程中涉及的各种量的相对大小进行精确的定量理解,而这是由数学不等式提供的。一个公众熟悉的例子可以解释为物理过程中“熵永远不会减少”; 所讨论的不等式表明,稍后时间的熵至少与早期时间的熵一样大。对于更具体的物理系统,我们可以说得更多,而寻求更好地理解物理过程以及控制它们的演化方程,部分是为了寻求新的、更精确的控制这些过程的数学不等式。数学不等式和物理过程之间的联系是双向的,因此在试图证明这种不等式时,人们可能会尝试将其与一个简单且易于理解的进化方程联系起来。这一研究领域取得了丰硕的成果,不仅产生了更广泛的科学界感兴趣的结果,而且还引起了博士生的兴趣。学生。这项研究的智力价值在于,它不仅会产生重要的新数学,而且还会产生与物理科学和工程学相关的结果。这种在其他领域的适用性保证了这项工作的广泛影响,学生的参与进一步增强了这种影响,有助于培养下一代研究人员。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative bounds on the rate of approach to equilibrium for some one-dimensional stochastic nonlinear Schrödinger equations
一些一维随机非线性薛定谔方程接近平衡速率的定量界限
- DOI:10.1088/1361-6544/aae69c
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Carlen, Eric A;Fröhlich, Jürg;Lebowitz, Joel;Wang, Wei-Min
- 通讯作者:Wang, Wei-Min
A Kac model with exclusion
具有排除的 Kac 模型
- DOI:10.1214/22-aihp1276
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Carlen, Eric;Wennberg, Bernt
- 通讯作者:Wennberg, Bernt
On the Convolution Inequality f ≥ f ⋆ f
关于卷积不等式 f → f → f
- DOI:10.1093/imrn/rnaa350
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Carlen, Eric A;Jauslin, Ian;Lieb, Elliott H;Loss, Michael P
- 通讯作者:Loss, Michael P
Spectral gaps for reversible Markov processes with chaotic invariant measures: The Kac process with hard sphere collisions in three dimensions
具有混沌不变测度的可逆马尔可夫过程的谱间隙:具有三维硬球碰撞的 Kac 过程
- DOI:10.1214/20-aop1437
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Carlen, Eric;Carvalho, Maria;Loss, Michael
- 通讯作者:Loss, Michael
Recovery and the Data Processing Inequality for Quasi-Entropies
准熵的恢复和数据处理不等式
- DOI:10.1109/tit.2018.2812038
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Carlen, Eric A.;Vershynina, Anna
- 通讯作者:Vershynina, Anna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Carlen其他文献
Large time behavior of non-symmetric Fokker-Planck type equations
非对称 Fokker-Planck 型方程的大时间行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Anton Arnold;Eric Carlen;琚强昌 - 通讯作者:
琚强昌
Classical and Quantum Mechanical Models of Many-Particle Systems 3 Workshop : Classical and Quantum Mechanical Models of Many-Particle Systems
多粒子系统的经典和量子力学模型3研讨会:多粒子系统的经典和量子力学模型
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Eric Carlen;Gonca L. Aki;Jean Dolbeault;Christof Sparber;M. Bisi;Yann Brenier;J. Cañizo;José Antonio Carrillo - 通讯作者:
José Antonio Carrillo
Eric Carlen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Carlen', 18)}}的其他基金
Variational Questions, Stability, and Dynamics
变分问题、稳定性和动力学
- 批准号:
2055282 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
- 批准号:
0901632 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Analysis, Probability, and Logic: A Conference in Honor of Edward Nelson
分析、概率和逻辑:纪念爱德华·纳尔逊的会议
- 批准号:
0404763 - 财政年份:2004
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A Relevant Mathematics Curriculum for Today's Science and Engineering Students
适合当今理工科学生的相关数学课程
- 批准号:
0410893 - 财政年份:2004
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Research in Kinetic Theory and Kinetic Models of Hydrodynamic Behavior
美意合作研究:水动力行为的动力学理论和动力学模型研究
- 批准号:
9811588 - 财政年份:1999
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
1997 International Conference on Differential Equations and Mathematical Physics; March 23-29, 1997; Birmingham, Alabama
1997年微分方程和数学物理国际会议;
- 批准号:
9700676 - 财政年份:1997
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8605701 - 财政年份:1986
- 资助金额:
$ 27万 - 项目类别:
Fellowship Award
相似海外基金
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Abstract rigidity for natural stability problems
自然稳定性问题的抽象刚性
- 批准号:
EP/X036723/1 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Research Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Stability of Brunn-Minkowski inequalities and Minkowski type problems for nonlinear capacity
Brunn-Minkowski 不等式的稳定性和非线性容量的 Minkowski 型问题
- 批准号:
EP/W001586/1 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Stability issues in some biomedical, financial, and geophysical inverse problems
一些生物医学、金融和地球物理反问题中的稳定性问题
- 批准号:
2008154 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Simulation and stability of complex three-dimensional flow problems
复杂三维流动问题的仿真与稳定性
- 批准号:
2340171 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Studentship
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability analysis for inverse problems of fractional partial differential equations and related topics
分数阶偏微分方程反问题的稳定性分析及相关主题
- 批准号:
19K23400 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




