Dynamics and Variational Problems
动力学和变分问题
基本信息
- 批准号:0300349
- 负责人:
- 金额:$ 31.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-15 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI/Co-PI:Michael Loss/Eric Carlen, Georgia, TechDMS-0300349ABSTRACT:The investigators will study a variety of physical problems ranging from a probabilistic investigation of the rates of equilibration in many particle systems, to the stability of matter in the presence of a quantized radiation field. More specifically, in the first problem mentioned, they will be studying the distance from equilibrium of a many particle system as measured by entropyor related Lyapunov functions. The goal will be inequalities that yield realistic rates of approach to equilibrium for initial conditions that are far away from the equilibrium state. In recent work on the Kac model of molecular collisions, the investigators developed a method for controlling the rate of dissipation as a function of the number of molecules in the system. New work will extend this to other measures of the distance from equilibrium that is better suited to initial data far from equilibrium. The second problem is concerned with understanding the stability of matter problem for relativistic models with pair creation taken into account. Moreover, various questions concerning the self-energy of systems interacting with radiation and the existence of ground states will be investigated. All these problems will be treated from a non-perturbative perspective.It is a fundamental observation that many laws of nature can be formulated as maximization or minimization problems. It is therefore important to describe the configurations of the physical systems that yield these minima or maxima, as well as understanding how these equilibrium configurations are reached by the system. This proposal investigates such problems in specific but fundamental models. These models are physically diverse: both classical and quantum, deterministic and probabilistic. The common mathematical thread that binds these problems, and many others discussed in the proposal, is that they all lead to challenging problems in the calculus of variations. Thus, they are tied together in that their solutions require new a--priori estimates, in the form of inequalities. This can be an estimate on the ground state energy in field theory or an estimate on the rate of dissipation in kinetic theory. Ideally, these inequalities should be sharp enough to serve as the basis of exact calculations, and have applicability to problems other than the one that motivated them, as in the previous work on the Kac model. What makes it especially attractive to work in this area is that it cuts across the boundaries of mathematics and other scientific disciplines.
PI/Co-PI:Michael Loss/Eric Carlen,格鲁吉亚,TechDMS-0300349摘要:研究人员将研究各种物理问题,从许多粒子系统平衡率的概率研究到量子化辐射场存在下的物质稳定性。 更具体地说,在提到的第一个问题中,他们将研究由熵或相关的李雅普诺夫函数测量的多粒子系统的平衡距离。 我们的目标将是不等式,产生现实的速度接近平衡的初始条件是远离平衡状态。 在最近对Kac分子碰撞模型的研究中,研究人员开发了一种方法,用于控制耗散率作为系统中分子数量的函数。 新的工作将扩展到其他措施的距离平衡,更适合于初始数据远离平衡。 第二个问题是关于理解考虑对产生的相对论模型的物质稳定性问题。 此外,还将研究与辐射相互作用的系统的自能和基态存在的各种问题。 所有这些问题都将从非微扰的角度来处理。这是一个基本的观察,许多自然规律可以制定为最大化或最小化的问题。 因此,描述产生这些最小值或最大值的物理系统的配置以及理解系统如何达到这些平衡配置是很重要的。 这个提议在具体但基本的模型中研究了这些问题。 这些模型在物理上是多样的:既有经典的,也有量子的,既有确定性的,也有概率的。 将这些问题和提案中讨论的许多其他问题联系在一起的共同数学线索是,它们都导致变分法中具有挑战性的问题。 因此,它们是联系在一起的,因为它们的解决方案需要新的先验估计,以不等式的形式。这可以是场论中对基态能量的估计,也可以是动力学理论中对耗散率的估计。 理想情况下,这些不等式应该足够尖锐,可以作为精确计算的基础,并且适用于除了激发它们的问题之外的问题,就像以前对Kac模型的工作一样。 在这一领域工作特别有吸引力的是,它跨越了数学和其他科学学科的界限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Loss其他文献
Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions
- DOI:
10.1007/bf02885674 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Loss;Bernd Thaller - 通讯作者:
Bernd Thaller
Relativistic Hydrogenic Atoms in Strong Magnetic Fields
- DOI:
10.1007/s00023-006-0321-5 - 发表时间:
2007-06-07 - 期刊:
- 影响因子:1.300
- 作者:
Jean Dolbeault;Maria J. Esteban;Michael Loss - 通讯作者:
Michael Loss
On an inequality of Lin, Kim and Hsieh and Strong Subadditivity
论 Lin、Kim 和 Hsieh 的不等式以及强次可加性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
E. Carlen;Michael Loss - 通讯作者:
Michael Loss
Michael Loss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Loss', 18)}}的其他基金
Variational Questions in Mathematics and Physics
数学和物理中的变分问题
- 批准号:
2154340 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1856645 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1600560 - 财政年份:2016
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
- 批准号:
0901304 - 财政年份:2009
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Dynamics and Variational Problems
数学科学:非线性动力学和变分问题
- 批准号:
9500840 - 财政年份:1995
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Methods in Variational Problems
数学科学:变分问题的动力学方法
- 批准号:
9207703 - 财政年份:1992
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
U.S.-Switerland Exchange of Postdoctoral Scientists and Engineers: Mathematics Problems in Quantum Mechanics
美国-瑞士博士后科学家和工程师交流:量子力学中的数学问题
- 批准号:
8503858 - 财政年份:1985
- 资助金额:
$ 31.7万 - 项目类别:
Fellowship Award
相似海外基金
Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
- 批准号:
2154578 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Variational Problems, Stability and Dynamics
变分问题、稳定性和动力学
- 批准号:
1764254 - 财政年份:2018
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
- 批准号:
1700202 - 财政年份:2017
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
- 批准号:
0901304 - 财政年份:2009
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
- 批准号:
0901632 - 财政年份:2009
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Dynamics and Variational Problems
数学科学:非线性动力学和变分问题
- 批准号:
9500840 - 财政年份:1995
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant