Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
基本信息
- 批准号:0901304
- 负责人:
- 金额:$ 28.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal aims to explore the interplay of dynamics and variational inequalities. Variational inequalities provide an effective means toderive properties of solutions of evolution equations and likewise, evolution equations can be used to derive variational inequalities. Exploiting this interplay has been very fruitful in the past, and the investigators plan to approach various problems using this perspective. One is to find correction terms of various examples of the Hardy-Littlewood-Sobolev inequality by exploiting a surprising connection to the porous medium equation and to the Gagliardo-Nirenberg inequality. In particular, a correction term for the logarithmic Hardy-Littlewood-Sobolev inequality will lead to an improved understanding of the solutions of the Keller-Segel model describing the chemotaxis of certain bacteria. A similar philosophy applies as well to certain problems in kinetic theory, with the plan to derive quantitative estimates on speed of approach to equilibrium for some inhomogeneous master equations of Kac type. These investigations tie in with analogous questions in quantum mechanics. Here the PI's plan to prove hypercontractivity estimates for Lindblad operators that describe dissipative quantum mechanical systems, with the aim to obtain quantitative estimates on the speed of approach to equilibrium as well. Another circle of problems is proving Lifshitz tails in the random displacement model. The aim there is to understand the conductivity properties of materials.Many phenomena in science and technology can be modeled by evolution equations. An interesting example, treated in this proposal, is the Keller Segal model, that models the aggregation, or the absence thereof, in the motion of bacteria. Understanding the behavior of solutions of these equations is both biologically and mathematically interesting. Likewise, it is widely observed thatn systems of many interacting particles, either classical or quantum mechanical, evolve toward an equilibrium, and they do this at a certain speed, often largely independent of the number of particles. Understanding this, and determining this speed is one of the objects of this research. Another question of great interest is what distinguishes a conductor from an insulator. There are simple models in quantum mechanics that are supposed to exhibit these kind of behavior. While it is impossible to understand these phenomena by exact computations, using mathematical techniques notably from analysis, the PI's aim to understand these processes better. Conversely, applied problems, e.g., the porous medium equations that describes the seepage of water in dams, can be used to find interesting mathematical facts, which in turn lead to improved understanding of other problems. It is this interplay of pure and applied mathematics that is the focus of the PI's research and it has been an excellent way to educate graduate students as well as undergraduates, and to draw them into mathematical research.
该提案旨在探索动态和变分不等式的相互作用。变分不等式为推导演化方程解的性质提供了一种有效的手段,同样,演化方程也可以用来推导变分不等式。利用这种相互作用在过去是非常富有成效的,研究人员计划用这种观点来解决各种问题。一个是通过利用与多孔介质方程和加利亚多-尼伦伯格不等式的惊人联系,找到Hardy-Littlewood-Sobolev不等式的各种例子的修正项。特别是,对数Hardy-Littlewood-Sobolev不等式的修正项将导致对描述某些细菌趋化性的Keller-Segel模型解的更好理解。类似的理念也适用于动力学理论中的某些问题,计划对一些非齐次Kac型主方程的接近平衡的速度进行定量估计。这些研究与量子力学中的类似问题密切相关。在这里,PI计划证明描述耗散量子力学系统的Lindblad算子的超收缩性估计,目的是获得接近平衡的速度的定量估计。另一个问题是在随机位移模型中证明Lifshitz尾。目的是了解材料的导电性。科学技术中的许多现象都可以用进化方程来模拟。一个有趣的例子,在这个提议中,是Keller Segal模型,它模拟了细菌运动中的聚集或缺失。理解这些方程解的行为在生物学和数学上都很有趣。同样,人们广泛观察到,许多相互作用的粒子的系统,无论是经典的还是量子力学的,都朝着平衡发展,并且它们以一定的速度发展,通常在很大程度上与粒子的数量无关。了解这一点,并确定这一速度是本研究的目标之一。另一个非常有趣的问题是导体和绝缘体的区别。在量子力学中有一些简单的模型可以展示这些行为。虽然不可能通过精确的计算来理解这些现象,使用数学技术特别是分析,PI的目标是更好地理解这些过程。相反,应用问题,例如,描述大坝中水渗流的多孔介质方程,可以用来发现有趣的数学事实,从而提高对其他问题的理解。纯粹数学和应用数学的相互作用是PI研究的重点,这是教育研究生和本科生的一个很好的方式,并吸引他们进入数学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Loss其他文献
Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions
- DOI:
10.1007/bf02885674 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Loss;Bernd Thaller - 通讯作者:
Bernd Thaller
Relativistic Hydrogenic Atoms in Strong Magnetic Fields
- DOI:
10.1007/s00023-006-0321-5 - 发表时间:
2007-06-07 - 期刊:
- 影响因子:1.300
- 作者:
Jean Dolbeault;Maria J. Esteban;Michael Loss - 通讯作者:
Michael Loss
On an inequality of Lin, Kim and Hsieh and Strong Subadditivity
论 Lin、Kim 和 Hsieh 的不等式以及强次可加性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
E. Carlen;Michael Loss - 通讯作者:
Michael Loss
Michael Loss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Loss', 18)}}的其他基金
Variational Questions in Mathematics and Physics
数学和物理中的变分问题
- 批准号:
2154340 - 财政年份:2022
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1856645 - 财政年份:2019
- 资助金额:
$ 28.77万 - 项目类别:
Continuing Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1600560 - 财政年份:2016
- 资助金额:
$ 28.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Dynamics and Variational Problems
数学科学:非线性动力学和变分问题
- 批准号:
9500840 - 财政年份:1995
- 资助金额:
$ 28.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Methods in Variational Problems
数学科学:变分问题的动力学方法
- 批准号:
9207703 - 财政年份:1992
- 资助金额:
$ 28.77万 - 项目类别:
Continuing Grant
U.S.-Switerland Exchange of Postdoctoral Scientists and Engineers: Mathematics Problems in Quantum Mechanics
美国-瑞士博士后科学家和工程师交流:量子力学中的数学问题
- 批准号:
8503858 - 财政年份:1985
- 资助金额:
$ 28.77万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210717 - 财政年份:2022
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210689 - 财政年份:2022
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106534 - 财政年份:2021
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106988 - 财政年份:2021
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Variational Inference Approach to Computer Model Calibration, Uncertainty Quantification, Scalability, and Robustness
合作研究:计算机模型校准、不确定性量化、可扩展性和鲁棒性的变分推理方法
- 批准号:
1952856 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A Unified Framework of Distributional Optimization via Variational Transport
合作研究:CIF:小型:通过变分传输的分布式优化的统一框架
- 批准号:
2008827 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2038030 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Variational Inference Approach to Computer Model Calibration, Uncertainty Quantification, Scalability, and Robustness
合作研究:计算机模型校准、不确定性量化、可扩展性和鲁棒性的变分推理方法
- 批准号:
1952897 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant