Materials World Network: Bioinspired Composite Single-Crystals - From Structural Evolution to Mechanical Characterization

材料世界网络:仿生复合单晶 - 从结构演化到机械表征

基本信息

  • 批准号:
    1210304
  • 负责人:
  • 金额:
    $ 79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: With support from the Solid State and Materials Chemistry program and the Office of Special Programs in the Division of Materials Research, this research aims to develop a unified understanding of the formation, structure, and mechanical properties of synthetic and biologic single crystal composites. The Materials World Network team with members from Cornell University (supported by the Division for Materials Research), Lawrence Berkeley National Labs, and the UK (Universities of Leeds and Sheffield, supported by the EPSRC) offers a rare synergy of expertise in crystal growth, biomineralization, materials synthesis, polymer and colloid synthesis, mechanical properties, and materials characterization. Many natural systems produce elaborate composites in which fragile mineral single crystals and soft polymers are combined to create materials with superior mechanical properties. Such composites are typically understood and modeled in terms of homogeneous ideal mineral crystals embedded in a host organic matrix. However, the mineral single crystals are themselves composites in which a variety of organic and inorganic materials are occluded. Very little is known about how these single crystal composites form or their extraordinary properties. The research goals of this international collaboration are to: (1) Characterize single crystal biominerals and determine how their design leads to superior mechanical properties; (2) Translate these design strategies to the synthesis of calcite crystals occluding small molecules, structurally and chemically well-defined polymers and particles, and compliant and stiff frameworks, and evaluate the growth mechanisms involved; (3) Characterize and model the structural and mechanical properties of the composite crystals to elucidate synthesis-structure-function relationships; and (4) Begin to apply the understanding gained to generate novel composite materials. Just as the inspiration for this work comes from biological systems, the insights gained can be applied to better understanding the biological systems themselves. NON-TECHNICAL SUMMARY:With support from the Solid State and Materials Chemistry program and the Office of Special Programs in the Division of Materials Research, this collaboration brings together experienced and internationally-recognized researchers from the United States and Britain. The inspiration for this work comes from biominerals, which are formed using energy efficient, sustainable methods, and have unique morphologies and superior properties. Crystallization is a hugely important topic that has relevance to phenomena and applications as diverse as scaling, weathering, and the production of biomaterials, pharmaceuticals, and nanoparticles. Calcium carbonate, which is a significant focus of this proposal, is itself of tremendous industrial importance and an effective medium for carbon capture. By developing novel approaches to the synthesis of composite crystals, this research will provide a general and facile route for controlling the structure and properties of crystalline materials, leading to materials with tailored properties. This vision is anticipated to provide the basis for synthesizing next-generation materials such as artificial bone and tough synthetic dental enamel. In addition, the proposed project will promote intercultural exchanges in both training and teaching by offering: (1) Extended and short-term personnel exchanges of PIs and students with the UK collaborators; (2) International summer internships for undergraduates, with a focus on reaching under-represented minorities in STEM; and (3) a capstone international workshop on bio-inspired composite crystals organized by the PIs and their appointed researchers. The PIs will also work with science teachers to develop and distribute lesson plans for middle school students (Grades 6-8) with a focus on using examples from biomineralization to teach concepts of scientific classification and mechanical properties. In addition, this project will promote dialog and collaboration with national labs and facilities (e.g., the DOE-funded Molecular Foundry) to facilitate transfer of knowledge and capabilities for creation of useful technologies made possible by this research.
技术概要:在固态和材料化学计划以及材料研究部特别计划办公室的支持下,本研究旨在对合成和生物单晶复合材料的形成,结构和机械性能形成统一的理解。材料世界网络团队的成员来自康奈尔大学(由材料研究部支持),劳伦斯伯克利国家实验室和英国(利兹和谢菲尔德大学,由EPSRC支持),提供了晶体生长,生物矿化,材料合成,聚合物和胶体合成,机械性能和材料表征方面的专业知识的罕见协同作用。许多自然系统产生复杂的复合材料,其中脆弱的矿物单晶和软聚合物相结合,创造具有上级机械性能的材料。这样的复合材料通常被理解和建模方面的均匀的理想矿物晶体嵌入在主机有机基质。然而,矿物单晶本身是各种有机和无机材料被包藏的复合物。人们对这些单晶复合材料是如何形成的或它们的非凡特性知之甚少。这项国际合作的研究目标是:(1)表征单晶生物矿物并确定其设计如何导致上级机械性能;(2)将这些设计策略转化为方解石晶体的合成,其中包含小分子,结构和化学上明确的聚合物和颗粒,以及柔顺和刚性框架,并评估所涉及的生长机制;(3)表征和模拟复合晶体的结构和机械性能,以阐明合成-结构-功能关系;(4)开始应用所获得的理解来产生新的复合材料。正如这项工作的灵感来自生物系统一样,所获得的见解可以应用于更好地理解生物系统本身。在固态和材料化学计划以及材料研究部特别计划办公室的支持下,这项合作汇集了来自美国和英国的经验丰富和国际公认的研究人员。这项工作的灵感来自于生物矿物,它是使用节能,可持续的方法形成的,具有独特的形态和上级性能。结晶是一个非常重要的主题,与各种现象和应用相关,如缩放,风化以及生物材料,药物和纳米颗粒的生产。碳酸钙是本提案的重点,其本身具有巨大的工业重要性,也是碳捕获的有效介质。通过开发合成复合晶体的新方法,这项研究将为控制晶体材料的结构和性能提供一种通用和简便的途径,从而获得具有定制性能的材料。这一愿景有望为合成下一代材料(如人造骨和坚韧的合成牙釉质)提供基础。此外,拟议项目将通过以下方式促进培训和教学方面的跨文化交流:(1)与联合王国合作者进行长期和短期的专业研究人员和学生交流;(2)为本科生提供国际暑期实习机会,重点是接触在STEM领域代表性不足的少数群体;(3)为在STEM领域代表性不足的少数群体提供国际暑期实习机会;(4)为在STEM领域代表性不足的少数群体提供国际暑期实习机会。及(3)由专业研究员及其委任的研究人员举办的生物启发复合晶体国际研讨会。PI还将与科学教师合作,为中学生(6 - 8年级)制定和分发课程计划,重点是使用生物矿化的例子来教授科学分类和机械性能的概念。此外,该项目将促进与国家实验室和设施(例如,美国能源部资助的分子铸造厂),以促进知识和能力的转让,创造有用的技术,使这项研究成为可能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lara Estroff其他文献

Lara Estroff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lara Estroff', 18)}}的其他基金

Conference: 2015 Crystal Growth and Assembly: Fundamental Mechanisms of Ordering from the Atomic to the Mesoscale; University of New England, June 28- July 3, 2015
会议:2015晶体生长与组装:从原子到介观尺度有序的基本机制;
  • 批准号:
    1541245
  • 财政年份:
    2015
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
CAREER: Synthesis, Characterization, and Application of Gel-Grown, Polymer-Reinforced Single Crystals
职业:凝胶生长、聚合物增强单晶的合成、表征和应用
  • 批准号:
    0845212
  • 财政年份:
    2009
  • 资助金额:
    $ 79万
  • 项目类别:
    Continuing Grant

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 79万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
  • 批准号:
    1312525
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
  • 批准号:
    1312697
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
  • 批准号:
    1312750
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
  • 批准号:
    1311849
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
  • 批准号:
    240640164
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了