Collaborative Research: Software Infrastructure for Accelerating Grand Challenge Science with Future Computing Platforms
协作研究:利用未来计算平台加速重大挑战科学的软件基础设施
基本信息
- 批准号:1216898
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving scientific grand challenges requires effective use of cyber infrastructure. Future computing platforms, including Field Programmable Gate Arrays (FPGAs), General Purpose Graphics Processing Units (GPGPUs), multi-core and multi-threaded processors, and Cloud computing platforms, can dramatically accelerate innovation to solve complex problems of societal importance when supported by a critical mass of sustainable software.This project will organize scientific communities to help leverage the disruptive potential of future computing platforms through sustainable software. Grand challenge problems in biological science, social science, and security domains will be targeted based on their under-served needs and demonstrated possibilities. Users will be engaged through interdisciplinary workshops that bring together domain experts with software technologists with the goals of identifying core opportunity areas, determining critical software infrastructure, and discovering software sustainability challenges. The outcome will be an in-depth conceptual design for a Center for Sustainable Software on Future Computing Platforms, as part of the Software Infrastructure for Sustained Innovation (SI2) program. The design, scoped toward grand challenge problems, will identify common and specialized software infrastructure, research, development and outreach priorities, and coordination with the SSE and SSI components of the SI2 program. The interactions will offer a comprehensive understanding of grand challenges that best map to future computing platforms and the software infrastructure to best support scientists' needs. The workshops will enhance understanding of future platforms' potential for transformative research and lead to key insights into cross-cutting problems in leveraging their potential. Published results will help guide future research and reduce barriers to entry for under-represented groups.
解决科学的重大挑战需要有效利用网络基础设施。未来的计算平台,包括现场可编程门阵列(FPGA)、通用图形处理单元(GPGPU)、多核和多线程处理器以及云计算平台,在大量可持续软件的支持下,可以大大加快创新,解决具有社会重要性的复杂问题。该项目将组织科学界,帮助利用未来计算平台的破坏性潜力可持续的软件。生物科学、社会科学和安全领域的重大挑战问题将根据其未得到充分满足的需求和已证明的可能性而成为目标。用户将通过跨学科研讨会参与,这些研讨会将领域专家与软件技术专家聚集在一起,旨在确定核心机会领域,确定关键软件基础设施,并发现软件可持续性挑战。其成果将是未来计算平台上可持续软件中心的深入概念设计,作为可持续创新软件基础设施(SI2)计划的一部分。该设计将针对重大挑战问题,确定通用和专用软件基础设施,研究,开发和推广优先事项,以及与SI2计划的SSE和SSI组件的协调。这些互动将提供对重大挑战的全面理解,这些挑战最好地映射到未来的计算平台和软件基础设施,以最好地支持科学家的需求。这些讲习班将增进对未来平台进行变革性研究的潜力的了解,并导致对利用其潜力方面的跨领域问题的关键见解。公布的结果将有助于指导未来的研究,并减少代表性不足群体的进入障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viktor Prasanna其他文献
Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna - 通讯作者:
Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
- DOI:
10.1145/3649153.3649193 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Michael Kinsner;Deshanand Singh;Mahesh Iyer;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi-Chien Lin;Bingyi Zhang;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Guest Editorial: Computing Frontiers
- DOI:
10.1007/s10766-013-0240-2 - 发表时间:
2013-01-31 - 期刊:
- 影响因子:0.900
- 作者:
Calin Cascaval;Pedro Trancoso;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Viktor Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viktor Prasanna', 18)}}的其他基金
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
- 批准号:
2104264 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
- 批准号:
2119816 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
- 批准号:
2027007 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
- 批准号:
2009057 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
- 批准号:
1912680 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
- 批准号:
1643351 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
- 批准号:
2311207 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
- 批准号:
2311430 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
- 批准号:
2324949 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
- 批准号:
2317185 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2312741 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
- 批准号:
2232594 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
- 批准号:
2313054 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: EAGER: Towards Building a CyberInfrastructure for Facilitating the Assessment, Dissemination, Discovery, & Reuse of Software and Data Products
合作研究:渴望:建立网络基础设施以促进评估、传播、发现、
- 批准号:
2314202 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant