Conference on Highly Ocillatory Problems: Computation, Theory and Applications.
高振荡问题会议:计算、理论和应用。
基本信息
- 批准号:0702979
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Highly oscillatory problems, ubiquitous in applications, are typically consider to be very difficult theoretically and demanding computationally. However, recent developments provide highly effective means to treat problems with rapid oscillation. The Isaac Newton Institute program brings together professionals concerned in highly oscillatory phenomena, with an emphasis on multiscale modeling, homogenization, symplectic integration, Riemann-Hilbert techniques, highly oscillatory quadrature and exponential integrators, together with theoreticians and with workers in a wide range of applications. Typical grand challenges that we seek to address by this multidisciplinary collaboration are the solution of Schroedinger, Helmholtz and Maxwell equations, as well as long-term integration of equations originating in molecular dynamics.High oscillation pervades a very wide range of applications:electromagnetics, fluid dynamics, molecular modelling, quantum chemistry, computerized tomography, plasma transport, celestial mechanics, medical imaging, signal processing. . . . It has been addressed by a wide range of mathematical techniques, ranging from asymptotic theory, harmonic analysis, theory of dynamical systems, theory of integrable systems and differential geometry. The computation of highly oscillatory problems has spawned a large number of different numerical approaches and algorithms. The purpose of this program is to foster research into different aspects of high oscillation, including the theoretical, the computational and the applied, from a united standpoint and to promote the synergy implicit in an interdisciplinary activity.
高振荡问题在实际应用中普遍存在,理论上非常困难,计算上要求很高。然而,最近的发展提供了非常有效的手段来处理快速振荡的问题。艾萨克·牛顿研究所计划汇集了关注高度振荡现象的专业人士,重点是多尺度建模,均匀化,辛积分,黎曼-希尔伯特技术,高度振荡的正交和指数积分器,以及理论家和广泛应用的工人。通过这种多学科合作,我们寻求解决的典型重大挑战是薛定谔方程、亥姆霍兹方程和麦克斯韦方程的解,以及源自分子动力学方程的长期集成。高振荡渗透到非常广泛的应用领域:电磁学、流体动力学、分子建模、量子化学、计算机断层扫描、等离子体传输、天体力学、医学成像、信号处理。. . .它已经解决了广泛的数学技术,从渐近理论,调和分析,理论的动力系统,理论的可积系统和微分几何。高振荡问题的计算产生了大量不同的数值方法和算法。该计划的目的是从统一的角度促进对高振荡不同方面的研究,包括理论,计算和应用,并促进跨学科活动中隐含的协同作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
- 批准号:
1912654 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
- 批准号:
1318377 - 财政年份:2013
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
- 批准号:
2310284 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Professional incorporation and social inclusion of highly-skilled Asian migrants in Japan and the UK
日本和英国高技能亚洲移民的专业融入和社会融入
- 批准号:
24K16520 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
- 批准号:
EP/Y002261/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Research Grant
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Collaborative R&D
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
- 批准号:
24K15592 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
- 批准号:
23K25698 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




