Ecology of eukaryote microbes in the deep North Atlantic
北大西洋深处真核微生物的生态学
基本信息
- 批准号:1235169
- 负责人:
- 金额:$ 53.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the microbial realm, one of the three domains of life -- the Eukarya -- has received little attention in deep-sea research. This stands in contrast to the fact that in all known aquatic environments, and measured by the amount of material and energy transferred, the link between prokaryotic and eukaryotic cells is one of the most significant trophic interactions on Earth. In terms of volume, the deep sea is the largest biome, and despite its tremendous role in long-term biogeochemical cycles, it has largely been neglected. Biological activity in the deep sea is neither negligible nor homogeneous in space and time. Recent data suggest that biological activity in the dark ocean (as evidenced by respiration rates, bacterial secondary production and a variety of other metrics) is much higher than anticipated from all known organic carbon fuel sources combined (i.e., POC flux, DOC convection, in situ production and active transport by zooplankton). Water masses in the deep ocean represent highly-diverse biogeographic regions with distinct communities and particle distributions. Moreover, because of feeding thresholds, cold temperatures, extreme pressures and unique adaptations that deep-sea microbes exhibit, biological activity rules cannot simply be extrapolated from laboratory cultures and from experiments with surface-dwelling microbes. This study focuses on the fundamental role of eukaryotic microbial communities in deep-sea ecology with the overarching hypothesis that protists represent sensitive biological indicators of utilizable organic carbon. There is good reason to believe that microbial eukaryotes and their activities are better indicators of "new" sources of organic carbon than particle inventories, sediment traps, isotope ratios, or models based on surface production and theoretical flux attenuation. For these new biological indicators to work, however, one needs to separate live from the moribund and dead cells, the bacterivores from saprotrophs, the inactive resting stages from those actively feeding on prokaryotes, the gametes and zoospores from vegetative and feeding stages, and those located on particles from the ones freely suspended in the water column. Each of these groups represents different levels of per-cell energy and carbon requirements. Intellectual merit: This study determines the ecological role of eukaryotic microbes in the deep North Atlantic over large geographic regions. The research incorporates two fundamentally different experimental designs that capitalize on different time scales: 1) Short-term incubations (~72 hours) of respiratory activity and bacterivory combined with a high resolution sampling of abundances across large geographic regions performed from a research vessel, and 2) Long-term incubations (=/ 4 weeks) measuring colonization of sinking particles and growth of eukaryotic microbes using free-falling (untethered) vehicles representing the first attempt of physiological rate measurements directly in the deep sea. Methods include new tracers for bacterivory, incubations for single-cell respiration, taxonomic identification using fluorescence in situ hybridization, single-cell genomics, and the first of its kind deep-sea holographic microscope capturing images to a maximum depth of 6000 m at 5 micrometer resolution. Broader Impacts: This project supports undergraduate and graduate research and enhances undergraduate curriculum in biological oceanography courses held by the PI. Workshops for underrepresented groups will be held in Puerto Rico. A permanent exhibit on the role of microbes in the ocean will be installed at a major museum and interpretation center in Hampton Roads. This research contributes significantly to the development of new technology for oceanographic research with emphasis on deep-sea environments and supports international scientific research collaborations.
在微生物领域,生活的三个领域之一 - 真核生物 - 在深海研究中很少关注。这与以下事实相反:在所有已知的水生环境中,并通过转移的材料和能量的量来衡量,原核和真核细胞之间的联系是地球上最重要的营养相互作用之一。在数量方面,深海是最大的生物群落,尽管它在长期生物地球化学周期中具有巨大的作用,但它在很大程度上被忽略了。在深海中的生物活性在时空既不可忽略不相同。最近的数据表明,黑海洋中的生物活性(如呼吸率,细菌二级生产和各种其他指标所证明的那样)要比所有已知的有机碳燃料来源(即POC Flux,doc对流,原位生产和浮游动物的主动运输)所预期的要高得多。深海中的水块代表具有不同社区和颗粒分布的高度多样性的生物地理区域。此外,由于深海微生物所表现出的喂养阈值,寒冷的温度,极端压力和独特的适应性,因此不能简单地从实验室培养物中推断出生物活性规则,以及从实验室培养物中推断出来。这项研究的重点是真核微生物群落在深海生态学中的基本作用,其总体假设是生物代表了可利用的有机碳的敏感生物学指标。有充分的理由相信,与粒子库存,沉积物陷阱,同位素比率或基于基于表面产生和理论通量衰减的模型相比,微生物真核生物及其活性是有机碳的“新”来源更好的指标。但是,要使这些新的生物学指标起作用,需要将生物与垂死和死细胞分离,来自腐生的细菌植物,不活跃的休息阶段,与积极进食的原核生物,配子和动物孢子的植物,与营养和喂食阶段以及来自水列的粒子上的粒子。这些组中的每一个都代表了不同水平的人均能量和碳需求。智力优点:这项研究决定了北大西洋深地理区域中真核微生物的生态作用。这项研究结合了两种基本不同的实验设计,这些设计在不同的时间范围内都有资本:1)短期孵育(〜72小时)的呼吸活动和细菌的孵化(〜72小时),结合了从研究血管中进行的大地理区域进行丰度的高分辨率采样,以及使用长期孵化(=/ 4周)的循环(=/ 4周),以测量良好的成长(=/ 4周)。 (无限制的)车辆,代表了直接在深海中生理速率测量的首次尝试。方法包括新的细菌示踪剂,单细胞呼吸的孵育,使用荧光原位杂交的分类学鉴定,单细胞基因组学以及第一个同类深海全息显微镜将图像捕获至5微米分辨率为6000 m的最大深度。更广泛的影响:该项目支持本科和研究生研究,并增强了PI持有的生物海洋学课程中的本科课程。代表性不足的团体的讲习班将在波多黎各举行。关于微生物在海洋中作用的永久性展览将安装在汉普顿路的一个主要博物馆和解释中心。这项研究为海洋学研究的新技术发展做出了重大贡献,重点是深海环境,并支持国际科学研究合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Bochdansky其他文献
Bartlett, Emerging concepts on microbial processes in the bathypelagic ocean ecology, biogeochemistry and genomics
巴特利特,深海海洋生态学、生物地球化学和基因组学中微生物过程的新兴概念
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Nagata;Toshi;Christian Tamburini;Javier Aristegui;Federico Baltar;Alexander Bochdansky;Serena Fonda-Unami;Hideki Fukuda;Alexandra Gogou;Dennis A.Hansell;Roberta L.Hansman;Gerhard Herndl;Christos Panagiotopoulos;Thomas Reinthaler;Rumi Sohrin, - 通讯作者:
Rumi Sohrin,
Alexander Bochdansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Bochdansky', 18)}}的其他基金
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Linking optical characteristics of small particles (50 - 500 micrometer) with their sinking velocities in the mesopelagic environment
将小颗粒(50 - 500 微米)的光学特性与其在中层环境中的下沉速度联系起来
- 批准号:
2128438 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: NSF2026: Is Plastic Degradation Occurring in the Deep Ocean Water Column?
EAGER:合作研究:NSF2026:深海水柱中是否发生塑料降解?
- 批准号:
2033827 - 财政年份:2020
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Collaborative Research: Transforming Carbon in the Deep Sea
合作研究:深海碳转化
- 批准号:
1851368 - 财政年份:2019
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)
合作研究:追踪罗斯海藻碳输出的命运 (TRACERS)
- 批准号:
1142097 - 财政年份:2012
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Basin-scale distribution and activity of deep-sea protists in the North Atlantic Ocean
北大西洋深海原生生物的盆地尺度分布和活动
- 批准号:
0826659 - 财政年份:2008
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
SGER: Construction and Deployment of a High Pressure Chemostat System for the Culture of Deep Sea Bacteria and Nanoplankton Protists
SGER:用于深海细菌和纳米浮游生物原生生物培养的高压恒化器系统的构建和部署
- 批准号:
0550184 - 财政年份:2005
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
相似国自然基金
真核病原微生物抗原表位的高效分类模型及多肽疫苗靶点筛选研究
- 批准号:62202083
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
真核病原微生物抗原表位的高效分类模型及多肽疫苗靶点筛选研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
潮间带底栖生物膜中真核微生物的多样性与垂直迁移研究
- 批准号:
- 批准年份:2019
- 资助金额:62 万元
- 项目类别:面上项目
矿山酸性废水真核微生物多样性与群落功能研究
- 批准号:31870111
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
华北古元古代晚期至中元古代早期微生物群落及真核生物研究
- 批准号:41872012
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
真核微生物細胞壁の完全なαグルカン合成に必須なアミラーゼホモログの特異性解析
真核微生物细胞壁中完整 α-葡聚糖合成所必需的淀粉酶同系物的特异性分析
- 批准号:
23K23511 - 财政年份:2024
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
真核微生物のGal糖鎖が果たす認識糖としての役割
Gal糖链在真核微生物中作为识别糖的作用
- 批准号:
22KJ2454 - 财政年份:2023
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
真核生物ゲノムデータに混入している原核共生体ゲノムの体系的探索
系统搜索混合在真核基因组数据中的原核共生体基因组
- 批准号:
23H02535 - 财政年份:2023
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
真核・原核微生物の包括的マイクロバイオーム解析による水処理生態系設計への挑戦
通过真核和原核微生物的全面微生物组分析对水处理生态系统设计提出挑战
- 批准号:
22K18827 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Understanding the origin of eukaryotes through marine benthic archaea
通过海洋底栖古菌了解真核生物的起源
- 批准号:
22H04985 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for Scientific Research (S)