EAGER: Continuous, Catalyzed Thermopower Wave Generators Powered by Renewable Biofuels: A New Fuel Cell Concept

EAGER:由可再生生物燃料驱动的连续催化热电波发生器:一种新的燃料电池概念

基本信息

  • 批准号:
    1239073
  • 负责人:
  • 金额:
    $ 8.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Abstract#1239073Strano, Michael S.Technical BasisPortable energy storage and delivery is the cornerstone of modern transportation systems and the of the proliferation of portable electronic devices and is a rapidly growing field. Additionally, the development of the newest autonomous and mobile sensors, robots, and off-grid wireless networks, particularly at the micro- and nanoscale, is often hampered today by the lack of high power density energy systems of similar size. Each of todays portable energy technologies has its distinct shortcomings. Batteries are the most familiar form of electrical energy storage, but electrochemical energy density is fundamentally limited compared to storing energy in the chemical bonds of fuels. In addition, batteries slowly lose their charge over years, making them less desirable for long-term energy storage. Supercapacitors offer substantially higher power density (in weight and volume terms), but at the expense of energy density. Moreover, they cannot hold their charge even as long as batteries. Fuel cells and engines can use the large energy density of chemical fuels but are more complicated to fabricate at the small scale, so their power density has been limited so far. Professor Michael Strano of the Massachusetts Institute of Technology has performed some initial studies on an alternative energy device that offers the possibility of supplanting these existing devices.Thermopower wave based energy devices may dramatically increase the energy density of portable power devices more than a factor of 10, with other advantages such as zero storage losses and charge decay. High-conductivity scaffolds, like carbon nanotubes (CNTs), direct a hot chemical reaction wave along their length; the wave also pushes charge carriers to create a high-power pulse of electricity. This fast wave means that thermopower waves can often outperform conventional thermoelectrics using static thermal gradients in terms of power density and may not have the same limits on efficiency (usually about 1-5%)according to Strano. The concept to be tested is whether thermopower fuel cells can be created, which could be operated to generate power continuously; previous devices could only make electrical pulses shorter than a second. This project introduces the new aspect of the addition of metal catalyst nanoparticles to the CNT thermoelectric conduits. By focusing on fuels like formic acid and methanol that can be biologically derived, these generators can use renewable energy sources. This is an ideal EAGER project in that several high risk aspects must be successfully demonstrated. First, wave propagation using formic acid and alternatively methanol must be demonstrated using low- to medium-activity catalytic materials for their decomposition along the length of thermal conduit materials, including carbon nanotube fibers, inorganic nanowires, or grapheme films. Advances in theoretical understanding of these waves will accompany this effort. The choice of catalyst(s) must optimize the activation energy; too low and the fuel will react spontaneously without being controlled by the nanotubes, too high and the required initiation energy will be too large, sapping the efficiency. For liquid-fueled-TWGs to be practical, more common metals like Au, Fe, or Cu must be the active catalyst metal. Beyond this, a target would be to fabricate a working device and demonstrate extended operating life. This is clearly the high risk-high potential return project envisioned for EAGER awards. Broader Impacts For this project, the PI intends to utilize undergraduate and graduate researchers, as a means of fostering diversity in Engineering. The PI notes that the experiments that make up this project seem to be well suited for undergraduates, who adapt and learn quickly how to prepare thermopower wave substrates, and learn how to use the instrumentation. The PI has extensively worked with a large body of undergraduate students in the past, many of whom are gender and racial minorities. It is difficult to develop these aspects in a short EAGER project, so the PI is to be commended for making this effort.
便携式能量存储和输送是现代运输系统和便携式电子设备激增的基石,并且是一个快速增长的领域。此外,最新的自主和移动的传感器、机器人和离网无线网络(特别是在微米和纳米级)的开发如今常常受到缺乏类似尺寸的高功率密度能量系统的阻碍。今天的每一种便携式能源技术都有其明显的缺点。电池是最常见的电能存储形式,但与将能量存储在燃料的化学键中相比,电化学能量密度从根本上受到限制。此外,电池会随着时间的推移慢慢失去电量,这使得它们不太适合长期储能。超级电容器提供显著更高的功率密度(在重量和体积方面),但以能量密度为代价。此外,它们甚至不能像电池一样长时间充电。燃料电池和发动机可以利用化学燃料的大能量密度,但在小规模制造时更为复杂,因此迄今为止它们的功率密度受到限制。马萨诸塞州理工学院的Michael Strano教授已经对提供替代这些现有装置的可能性的替代能量装置进行了一些初步研究,基于热功率波的能量装置可以显著地增加便携式功率装置的能量密度超过10倍,具有其他优点,例如零存储损耗和电荷衰减。高导电性支架,如碳纳米管(CNT),引导热化学反应波沿着它们的长度;波也推动电荷载体产生高功率的电脉冲。根据Strano的说法,这种快速波意味着热功率波在功率密度方面通常可以优于使用静态热梯度的传统热电器件,并且可能没有相同的效率限制(通常约为1-5%)。要测试的概念是热动力燃料电池是否可以被创建,它可以被操作以连续发电;以前的设备只能使电脉冲短于一秒。该项目介绍了添加金属催化剂纳米颗粒的碳纳米管热电导管的新方面。通过专注于甲酸和甲醇等生物衍生燃料,这些发电机可以使用可再生能源。这是一个理想的EAGER项目,因为必须成功地证明几个高风险方面。首先,使用甲酸和甲醇的波传播必须使用低至中等活性的催化材料来证明,以使它们沿着热导管材料的长度分解,包括碳纳米管纤维、无机纳米线或石墨烯膜。对这些波的理论理解的进展将伴随着这一努力。催化剂的选择必须优化活化能;太低,燃料将自发反应而不受纳米管的控制,太高,所需的引发能量将太大,削弱效率。为了使液体燃料TWG实用,更常见的金属如Au、Fe或Cu必须是活性催化剂金属。除此之外,一个目标是制造一个工作装置,并证明延长工作寿命。这显然是EAGER奖项所设想的高风险高潜在回报项目。更广泛的影响对于这个项目,PI打算利用本科生和研究生的研究人员,作为促进工程多样性的一种手段。PI指出,组成这个项目的实验似乎非常适合本科生,他们适应并快速学习如何制备热动力波基板,并学习如何使用仪器。PI过去曾与大量本科生广泛合作,其中许多人是性别和种族少数群体。在一个短的EAGER项目中很难发展这些方面,因此PI在这方面的努力值得赞扬。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Strano其他文献

Saving the world with nanotechnology
用纳米技术拯救世界
  • DOI:
    10.1038/nnano.2006.113
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Donna J. Nelson;Michael Strano
  • 通讯作者:
    Michael Strano

Michael Strano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Strano', 18)}}的其他基金

Developing Nanosensor Chemical Cytometry (NCC) to Support the Development of Cellular Therapeutics
开发纳米传感器化学细胞术 (NCC) 以支持细胞治疗的发展
  • 批准号:
    2124194
  • 财政年份:
    2021
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Continuing Grant
Understanding Gas Transport through Nanopores in Graphene Membranes
了解石墨烯膜中纳米孔的气体传输
  • 批准号:
    1907716
  • 财政年份:
    2019
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904453
  • 财政年份:
    2019
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
EAGER: Detection Of In Vivo Corticosterone In Mice Using Cophmore Engineering And Fluorescent Carbon Nanotube Sensors
EAGER:使用 Cophmore 工程和荧光碳纳米管传感器检测小鼠体内皮质酮
  • 批准号:
    1445131
  • 财政年份:
    2014
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
Collaborative Proposal:RUI: Single-Walled Carbon Nanotube Nanopores for Motion Control of Biologically Important Molecules and Ions and Undergraduate Training in Nanopore Transport
合作提案:RUI:用于生物重要分子和离子运动控制的单壁碳纳米管纳米孔以及纳米孔传输的本科生培训
  • 批准号:
    1306529
  • 财政年份:
    2013
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料提案更新
  • 批准号:
    1213622
  • 财政年份:
    2012
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials - Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料 - 提案更新
  • 批准号:
    0753020
  • 财政年份:
    2007
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
PECASE: Understanding and Exploiting the Surface Chemistry of Carbon Nanotubes: Optical Methods and Chemical Pathways for Manipulation, Control and Assembly at the Nanoscale
PECASE:理解和利用碳纳米管的表面化学:纳米尺度操纵、控制和组装的光学方法和化学途径
  • 批准号:
    0758352
  • 财政年份:
    2007
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
  • 批准号:
    0753036
  • 财政年份:
    2007
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
  • 批准号:
    0708459
  • 财政年份:
    2007
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant

相似海外基金

3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
  • 批准号:
    2753054
  • 财政年份:
    2026
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Studentship
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
Continuous flow solvothermal synthesis of silver-3d metals nanoalloys for platinum-group-free catalysts
用于无铂族催化剂的银-3D金属纳米合金的连续流动溶剂热合成
  • 批准号:
    24K17587
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Seismic Performance and Evaluation of Hybrid Frame with CFST Column-continuous Beam Joints
钢管混凝土柱-连续梁节点混合框架抗震性能及评价
  • 批准号:
    24K17393
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Synthesis and Continuous Manufacture of Novel, High Performing Polymeric Lubricants for the Next Generation of Electric Transportation
用于下一代电动交通的新型高性能聚合物润滑剂的合成和连续制造
  • 批准号:
    2489089
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Studentship
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
  • 批准号:
    LP230100436
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Linkage Projects
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
  • 批准号:
    2338968
  • 财政年份:
    2024
  • 资助金额:
    $ 8.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了