Understanding Gas Transport through Nanopores in Graphene Membranes

了解石墨烯膜中纳米孔的气体传输

基本信息

  • 批准号:
    1907716
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Industrial processes that separate chemical mixtures are essential for civilization, including, for example, the production of energy, materials, and commodity chemicals. The development of more selective and energy efficient separation processes is therefore an important technological challenge, promising the potential for substantial cost savings as well as reductions in energy consumption and harmful emissions. Most industrial separations are energy-intensive thermal processes, which account for 10-15% of the world's overall energy consumption. Membrane-based separation processes offer attractive alternatives to thermal separation techniques due to their reduced energy consumption and excellent reliability. However, the trade-off between gas flux and selectivity of conventional gas separation membranes has historically limited the overall performance of a membrane separation unit, as well as the motivation for replacing energy-intensive processes with these more efficient alternatives. Graphene, an atomically thin layer of carbon atoms, is regarded as the potential ultimate limit of membrane efficiency for gas separation. Graphene and other two-dimensional materials are a single atom or unit cell thick and represent the absolute lowest mass transfer resistance (or highest throughput) among candidate membrane materials. Hence, this ultimate thinness can yield orders of magnitude higher gas fluxes than those attained using conventional membrane materials. To fulfill this potential, the goal of this project is to experimentally generate nanopores in the graphene layer with controlled size distributions for gas separation. Measurements of gas permeation will be used to gain fundamental understanding about molecular transport through these new types of nanopores using a theoretical and simulation framework. The project will contribute to ongoing educational efforts on the MIT campus, including learning modules for a course called Engineering Nanotechnology, and will engage under-represented student populations at MIT and the Cambridge academic community through high school internship and undergraduate research opportunities. The overarching goal of this proposal is to use a combined approach of experiment, molecular simulation, and theoretical analysis to advance the understanding of transport of gas molecules through molecularly sized nanopores in two-dimensional membranes such as graphene. Firstly, theory and simulations will be used to investigate nanopore formation in graphene and to study the permeation kinetics for different gas species through these nanopores, eventually creating a comprehensive theory to predict gas permeation through a realistic pore size distribution. Secondly, nanoporous graphene membranes will be fabricated, and the gas permeances through these membranes will be measured. Lastly, the formation, modification, and functionalization of the graphene pores will be investigated to further understand gas transport through different graphene pore structures. The combination of theory, molecular simulation, membrane fabrication, characterization, and gas flux measurements will provide the first fundamental links between pore structure and distribution with observed gas permeance, and elucidate the underlying mechanisms of molecular-pore interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分离化学混合物的工业过程对文明至关重要,包括例如能源,材料和商品化学品的生产。因此,开发更具选择性和能源效率的分离工艺是一项重要的技术挑战,有望大幅节省成本以及减少能源消耗和有害排放。大多数工业分离是能源密集型的热过程,占世界总能耗的10 - 15%。基于膜的分离方法由于其降低的能量消耗和优异的可靠性而提供了热分离技术的有吸引力的替代方案。然而,传统气体分离膜的气体通量和选择性之间的权衡在历史上限制了膜分离单元的整体性能,以及用这些更有效的替代品替代能量密集型工艺的动机。石墨烯是碳原子的原子薄层,被认为是气体分离膜效率的潜在极限。石墨烯和其他二维材料是单个原子或晶胞厚度,并且代表候选膜材料中绝对最低的传质阻力(或最高的通量)。 因此,这种最终的薄度可以产生比使用常规膜材料获得的气体通量高几个数量级的气体通量。为了实现这一潜力,该项目的目标是通过实验在石墨烯层中产生纳米孔,其尺寸分布可控,用于气体分离。气体渗透的测量将用于获得通过这些新型的纳米孔使用理论和模拟框架的分子运输的基本理解。该项目将有助于麻省理工学院校园正在进行的教育工作,包括一门名为工程纳米技术的课程的学习模块,并将通过高中实习和本科生研究机会,吸引麻省理工学院和剑桥学术界代表性不足的学生。该提案的首要目标是使用实验,分子模拟和理论分析的组合方法来促进对气体分子通过二维膜(如石墨烯)中分子大小的纳米孔的运输的理解。首先,理论和模拟将用于研究石墨烯中的纳米孔形成,并研究不同气体物种通过这些纳米孔的渗透动力学,最终创建一个综合理论来预测通过实际孔径分布的气体渗透。其次,将制备纳米多孔石墨烯膜,并测量通过这些膜的气体渗透率。最后,将研究石墨烯孔的形成、修饰和功能化,以进一步了解通过不同石墨烯孔结构的气体传输。理论、分子模拟、膜制造、表征和气体通量测量的结合将提供孔隙结构和分布与观察到的气体渗透性之间的第一个基本联系,并阐明分子-孔隙相互作用的潜在机制。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Chemical Vapor Deposition Synthesis of Porous Single‐Layer Graphene Membranes with High Gas Permeances and Selectivities
  • DOI:
    10.1002/adma.202104308
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Zhe Yuan;Guangwei He;S. Faucher;Matthias Kuehne;S. Li;D. Blankschtein;M. Strano
  • 通讯作者:
    Zhe Yuan;Guangwei He;S. Faucher;Matthias Kuehne;S. Li;D. Blankschtein;M. Strano
Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes
  • DOI:
    10.1021/acsnano.9b05779
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Yuan, Zhe;Misra, Rahul Prasanna;Blankschtein, Daniel
  • 通讯作者:
    Blankschtein, Daniel
Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances
使用纳米多孔原子薄膜进行气体分离:最新理论、模拟和实验进展
  • DOI:
    10.1002/adma.202201472
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Yuan, Zhe;He, Guangwei;Li, Sylvia Xin;Misra, Rahul Prasanna;Strano, Michael S.;Blankschtein, Daniel
  • 通讯作者:
    Blankschtein, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Strano其他文献

Saving the world with nanotechnology
用纳米技术拯救世界
  • DOI:
    10.1038/nnano.2006.113
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Donna J. Nelson;Michael Strano
  • 通讯作者:
    Michael Strano

Michael Strano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Strano', 18)}}的其他基金

Developing Nanosensor Chemical Cytometry (NCC) to Support the Development of Cellular Therapeutics
开发纳米传感器化学细胞术 (NCC) 以支持细胞治疗的发展
  • 批准号:
    2124194
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904453
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Detection Of In Vivo Corticosterone In Mice Using Cophmore Engineering And Fluorescent Carbon Nanotube Sensors
EAGER:使用 Cophmore 工程和荧光碳纳米管传感器检测小鼠体内皮质酮
  • 批准号:
    1445131
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Proposal:RUI: Single-Walled Carbon Nanotube Nanopores for Motion Control of Biologically Important Molecules and Ions and Undergraduate Training in Nanopore Transport
合作提案:RUI:用于生物重要分子和离子运动控制的单壁碳纳米管纳米孔以及纳米孔传输的本科生培训
  • 批准号:
    1306529
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料提案更新
  • 批准号:
    1213622
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Continuous, Catalyzed Thermopower Wave Generators Powered by Renewable Biofuels: A New Fuel Cell Concept
EAGER:由可再生生物燃料驱动的连续催化热电波发生器:一种新的燃料电池概念
  • 批准号:
    1239073
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials - Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料 - 提案更新
  • 批准号:
    0753020
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PECASE: Understanding and Exploiting the Surface Chemistry of Carbon Nanotubes: Optical Methods and Chemical Pathways for Manipulation, Control and Assembly at the Nanoscale
PECASE:理解和利用碳纳米管的表面化学:纳米尺度操纵、控制和组装的光学方法和化学途径
  • 批准号:
    0758352
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
  • 批准号:
    0753036
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
  • 批准号:
    0708459
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

LncRNA GAS5竞争性结合外泌体miR-21-5p靶向TNFAIP3调控巨噬细胞极化促进肩袖腱骨界面修复作用的机制研究
  • 批准号:
    2025JJ80589
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内源性SO2通过抑制DNMT1甲基化LncRNA GAS5拮抗硫酸吲哚酚诱发的心肌细胞焦亡及心肌纤维化
  • 批准号:
    2025JJ50606
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
骨肉瘤干细胞通过分泌GAS6诱导肌成纤 维细胞促进免疫逃逸的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5竞争性结合miR-21/PTEN轴靶向乳酸脱氢酶调控子宫内膜异位症糖酵解
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
lncRNA Gas5调控M1巨噬细胞极化在糖尿病肾病肾纤维化中的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Gas6/Axl信号轴调控铁死亡探索bFGF@adExos/GelMA复合水凝胶促脊髓损伤修复的研究
  • 批准号:
    MS25H090029
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5调控RUNX3/CD80/CD28轴促进甲状腺癌免疫激活的分子机制研究
  • 批准号:
    2025JJ70535
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于TAZ/miR-942-3P/GAS1通路探讨补肾活血方介导子宫内膜上皮细胞糖代谢重编程对宫腔粘连的作用机制研究
  • 批准号:
    2025JJ80912
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ESM1抑制GAS5影响PTEN/PI3K/Akt信号通路促进卵巢癌细胞顺铂耐药
  • 批准号:
    2025JJ50543
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
  • 批准号:
    2312000
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327572
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
  • 批准号:
    2312001
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Contaminant transport and remediation in dynamic gas-and-groundwater systems
动态天然气和地下水系统中的污染物迁移和修复
  • 批准号:
    RGPIN-2021-02515
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Thermal Transport across Liquid-gas Interfaces
RUI:液-气界面的热传输
  • 批准号:
    2310833
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Transport and optical properties of the interacting electron gas in Weyl semimetals and two-dimensional materials
外尔半金属和二维材料中相互作用电子气的输运和光学性质
  • 批准号:
    RGPIN-2019-06045
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Nanocomposite membranes functionalized with facilitated transport and molecular sieving for challenging gas separations
具有促进传输和分子筛功能的纳米复合膜,可用于具有挑战性的气体分离
  • 批准号:
    RGPIN-2019-04186
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Transport and impurity dynamics in a unitary Fermi gas
酉费米气体中的输运和杂质动力学
  • 批准号:
    DP210101652
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
  • 批准号:
    519885-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了