Regularization Properties of Nonstandard Diffusions
非标准扩散的正则化性质
基本信息
- 批准号:1764285
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The process of diffusion makes a distribution in space become more regular as time goes by. There are many systems that exhibit this behavior. The values of the temperature throughout an object, the concentration of some chemical, or the population density in migration are some examples of quantities that show diffusive behavior. In mathematical analysis, the prime example of a diffusive equation is the heat equation, or the more general family of parabolic partial differential equations. The purpose of this research project is to study non-standard diffusion. The project explores regularization effects in nonlinear equations that are outside the classical framework of parabolic equations. The research studies non-local equations, where the evolution of the value at any point depends on the global picture, and applies those methods in equations from statistical mechanics modeling the density of particles in a dilute gas. The project also studies conservation law equations, a fundamental class of partial differential equation, and aims to explicate regularization properties there as well. The project will involve graduate students and postdoctoral associates in the research. Results will be disseminated through publications, conferences, and summer schools.The study of non-local equations, and more precisely integro-differential equations, is a very active area of research. Recent work indicates that some of the ideas and methods developed in that area can be used to obtain regularity estimates for the Boltzmann equation from statistical mechanics. This research project aims at proving that if the solution of the Boltzmann equation ever develops a singularity, then some hydrodynamic quantity must be unbounded. These hydrodynamic quantities are the mass, energy, and entropy density, which correspond to physically meaningful properties of the fluid. Thus, the project aims to establish that if there is a singularity in the mesoscopic description of the fluid given by the Boltzmann equation, it must be apparent macroscopically. The Boltzmann equation can be rewritten as a parabolic integro-differential equation, and the restriction on its hydrodynamic quantities determines the non-degeneracy of the corresponding kernel. This connection between integro-differential equations and the Boltzmann equation is also useful as a guide for further development of the former subject. The study of regularization mechanisms using methods from parabolic equations applied to conservation law equations is arguably even more surprising. In scalar conservation laws, the solution is transported following a velocity that depends on the value at every point. Shock singularities are unavoidable for smooth initial data; however, the same shock mechanism forces some self-organization that translates into a regularization effect when starting from very rough initial data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
扩散过程使空间分布随着时间的推移变得更加规则。有许多系统表现出这种行为。整个物体的温度值,某些化学物质的浓度,或迁移中的人口密度是显示扩散行为的一些量的例子。在数学分析中,扩散方程的主要例子是热方程,或者更一般的抛物型偏微分方程。本研究项目的目的是研究非标准扩散。该项目探讨了抛物方程经典框架之外的非线性方程中的正则化效应。该研究研究了非局部方程,其中任何点的值的演变取决于全局图像,并将这些方法应用于统计力学方程中,模拟稀气体中粒子的密度。该项目还研究守恒律方程,偏微分方程的一个基本类别,并旨在阐明正则化性质。该项目将涉及研究生和博士后助理的研究。 结果将通过出版物、会议和暑期学校传播。非局部方程的研究,更准确地说是积分微分方程的研究,是一个非常活跃的研究领域。最近的工作表明,在这一领域发展的一些想法和方法可以用来从统计力学中获得玻尔兹曼方程的正则性估计。本研究计画的目的在于证明,若玻尔兹曼方程的解会发展出奇异性,则某些流体力学量必定是无界的。这些流体动力学量是质量、能量和熵密度,它们对应于流体的物理上有意义的性质。因此,该项目旨在确定,如果在玻尔兹曼方程给出的流体的介观描述中存在奇点,那么它必须在宏观上是明显的。玻尔兹曼方程可以改写为抛物型积分微分方程,其流体力学量的限制决定了相应核的非退化性。积分微分方程和玻尔兹曼方程之间的这种联系也有助于指导前一主题的进一步发展。使用抛物方程应用于守恒律方程的方法来研究正则化机制可以说更令人惊讶。在标量守恒律中,解的传输速度取决于每一点的值。冲击奇点对于平滑的初始数据是不可避免的;然而,同样的冲击机制迫使一些自组织,当从非常粗糙的初始数据开始时,这些自组织转化为正则化效应。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Schauder estimate for kinetic integral equations
- DOI:10.2140/apde.2021.14.171
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:C. Imbert;L. Silvestre
- 通讯作者:C. Imbert;L. Silvestre
Singular solutions to parabolic equations in nondivergence form
非散度形式的抛物型方程的奇异解
- DOI:10.2422/2036-2145.202011_110
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Silvestre, Luis
- 通讯作者:Silvestre, Luis
Coercivity estimates for integro-differential operators
- DOI:10.1007/s00526-020-01764-y
- 发表时间:2019-04
- 期刊:
- 影响因子:2.1
- 作者:Jamil Chaker;L. Silvestre
- 通讯作者:Jamil Chaker;L. Silvestre
Regularity for the Boltzmann equation conditional to macroscopic bounds
- DOI:10.4171/emss/37
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:C. Imbert;L. Silvestre
- 通讯作者:C. Imbert;L. Silvestre
Gaussian Lower Bounds for the Boltzmann Equation without Cutoff
- DOI:10.1137/19m1252375
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:C. Imbert;C. Mouhot;L. Silvestre
- 通讯作者:C. Imbert;C. Mouhot;L. Silvestre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Silvestre其他文献
Understanding the design of software development teams for academic scenarios
了解学术场景软件开发团队的设计
- DOI:
10.1109/sccc.2015.7416570 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Luis Silvestre;S. Ochoa;Maíra R. Marques - 通讯作者:
Maíra R. Marques
Partial regularity of solutions of fully nonlinear, uniformly elliptic equations
全非线性一致椭圆方程解的部分正则性
- DOI:
10.1002/cpa.21394 - 发表时间:
2011 - 期刊:
- 影响因子:3
- 作者:
S. Armstrong;Luis Silvestre;Charles K. Smart - 通讯作者:
Charles K. Smart
The Landau equation does not blow up
朗道方程不会爆炸
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nestor Guillen;Luis Silvestre - 通讯作者:
Luis Silvestre
A model-based tool for generating software process model tailoring transformations
用于生成软件流程模型定制转换的基于模型的工具
- DOI:
10.5220/0004715805330540 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Luis Silvestre;M. Bastarrica;S. Ochoa - 通讯作者:
S. Ochoa
Automatic Generation of Transformations for Software Process Tailoring
自动生成软件流程定制的转换
- DOI:
10.1007/s11219-022-09585-2 - 发表时间:
2015 - 期刊:
- 影响因子:1.9
- 作者:
Luis Silvestre - 通讯作者:
Luis Silvestre
Luis Silvestre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Silvestre', 18)}}的其他基金
On regularity and singularity of solutions of some nonlinear elliptic equations
一些非线性椭圆方程解的正则性和奇异性
- 批准号:
1362525 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Regularity estimates for elliptic and parabolic equations
职业:椭圆方程和抛物线方程的正则性估计
- 批准号:
1254332 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research : Emerging Issues in the Sciences Involving Non-Standard Diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065979 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Nonlinear elliptic and parabolic equations with nonlocal effects
具有非局部效应的非线性椭圆和抛物线方程
- 批准号:
1001629 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
- 批准号:
0901995 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
- 批准号:
0701016 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
- 批准号:
2333551 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
- 批准号:
2343416 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists