On regularity and singularity of solutions of some nonlinear elliptic equations

一些非线性椭圆方程解的正则性和奇异性

基本信息

  • 批准号:
    1362525
  • 负责人:
  • 金额:
    $ 12.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns the analysis and applications of nonlinear partial differential equations, with emphasis on integro-differential equations. Integro-differential equations are equations which involve both integrals and derivatives. They arise from models such as in diffusion with long range interactions in physics, future options in mathematical finance, and population dynamics in social science. They also appear intrinsically in geometry. One main goal of the proposal is to study fine analysis of a particular family of integro-differential equations, which will be applied to understand a number of scientific phenomena in geometry and physics. Another main goal is to develop general mathematical theories on integro-differential equations for their wide usage in future. Other than its applications, the analysis itself for those equations is of independent interest. It not only extends the current theories of partial differential equations, but also gives new insights and creates new methods of establishing them. This proposal focuses on regularity and singularity of solutions of nonlinear elliptic partial differential equations. The PI proposes to develop a unified approach to study existence and compactness of solutions to a family of prescribed fractional order curvature problems in conformal geometry. The investigation of their singular solutions will not only develop further the fractional singular Yamabe problem, but also lead naturally to boundary reaction-diffusion equations which appear as models of dislocations in crystals and soft thin films in micromagnetism. The study on regularity of fully nonlinear integro-differential equations, which usually arise from stochastic control problems with purely jump Levy process, will enrich the existing general regularity theory. The proposed research on Monge-Ampere equations is motivated by Monge-Ampere metrics on affine manifolds with singularities. Its goal is to address the regularity and analyze the behavior of solutions of such equations with singularities, and to understand their connections to differential geometry.
本课题研究非线性偏微分方程的分析与应用,重点研究积分微分方程。积分微分方程是既包含积分又包含导数的方程。它们来自于物理学中具有长期相互作用的扩散模型、数学金融中的未来选择模型和社会科学中的人口动态模型。它们本质上也出现在几何中。该提案的一个主要目标是研究一组特定的积分-微分方程的精细分析,这将被应用于理解几何和物理中的许多科学现象。另一个主要目标是发展积分-微分方程的一般数学理论,使其在未来得到广泛应用。除了它的应用之外,对这些方程的分析本身也具有独立的意义。它不仅扩展了现有的偏微分方程理论,而且给出了新的见解,创造了建立偏微分方程的新方法。本文主要研究非线性椭圆型偏微分方程解的正则性和奇异性。PI提出了一种统一的方法来研究保形几何中一类规定分数阶曲率问题解的存在性和紧性。对它们的奇异解的研究不仅将进一步发展分数阶奇异的Yamabe问题,而且将自然而然地导致边界反应-扩散方程的出现,作为微磁性中晶体和软薄膜位错的模型。完全非线性积分-微分方程的正则性研究将丰富现有的一般正则性理论,这些方程通常是由纯跳跃Levy过程的随机控制问题引起的。本文提出的蒙日-安培方程的研究是由奇异仿射流形上的蒙日-安培度量驱动的。它的目标是解决这些奇异方程的规律性和分析解的行为,并了解它们与微分几何的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Silvestre其他文献

Understanding the design of software development teams for academic scenarios
了解学术场景软件开发团队的设计
Partial regularity of solutions of fully nonlinear, uniformly elliptic equations
全非线性一致椭圆方程解的部分正则性
The Landau equation does not blow up
朗道方程不会爆炸
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nestor Guillen;Luis Silvestre
  • 通讯作者:
    Luis Silvestre
A model-based tool for generating software process model tailoring transformations
用于生成软件流程模型定制转换的基于模型的工具
Automatic Generation of Transformations for Software Process Tailoring
自动生成软件流程定制的转换
  • DOI:
    10.1007/s11219-022-09585-2
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Luis Silvestre
  • 通讯作者:
    Luis Silvestre

Luis Silvestre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Silvestre', 18)}}的其他基金

Diffusion in Kinetic Equations
动力学方程中的扩散
  • 批准号:
    2350263
  • 财政年份:
    2024
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Diffusion and Regularity
扩散性和规律性
  • 批准号:
    2054888
  • 财政年份:
    2021
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Regularization Properties of Nonstandard Diffusions
非标准扩散的正则化性质
  • 批准号:
    1764285
  • 财政年份:
    2018
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
CAREER: Regularity estimates for elliptic and parabolic equations
职业:椭圆方程和抛物线方程的正则性估计
  • 批准号:
    1254332
  • 财政年份:
    2013
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research : Emerging Issues in the Sciences Involving Non-Standard Diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065979
  • 财政年份:
    2011
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Nonlinear elliptic and parabolic equations with nonlocal effects
具有非局部效应的非线性椭圆和抛物线方程
  • 批准号:
    1001629
  • 财政年份:
    2010
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0901995
  • 财政年份:
    2008
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0701016
  • 财政年份:
    2007
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant

相似海外基金

Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism of singularity preservation for solutions in parabolic equations
抛物型方程解的奇异性保持机制
  • 批准号:
    19K14567
  • 财政年份:
    2019
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ancient Solutions and Singularity Analysis in Geometric Flows
几何流中的古代解和奇异性分析
  • 批准号:
    1811833
  • 财政年份:
    2018
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Singularity of solutions and stationary problems for nonlinear parabolic equations
非线性抛物型方程解的奇异性和平稳问题
  • 批准号:
    17K05333
  • 财政年份:
    2017
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the structure of the resonant interaction and behavior/singularity of the solutions for nonlinear dispersive wave equations
非线性色散波动方程的共振相互作用结构和解的行为/奇异性研究
  • 批准号:
    16K17626
  • 财政年份:
    2016
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on geometric symmetry and singularity of solutions for nonlinear wave equations
非线性波动方程解的几何对称性和奇异性研究
  • 批准号:
    16K17624
  • 财政年份:
    2016
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Singularity Analysis of Solutions to the Boltzmann Equation near the Boundary
玻尔兹曼方程边界附近解的奇异性分析
  • 批准号:
    15K17572
  • 财政年份:
    2015
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Singularity of solutions for nonlinear partial differential equations of parabolic type and structure of solutions for the stationary problems
抛物型非线性偏微分方程解的奇异性和平稳问题解的结构
  • 批准号:
    23540244
  • 财政年份:
    2011
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of fracture phenomena from the viewpoint of singularity of solutions of partial differential equations at crack tips
从裂纹尖端偏微分方程解奇异性的角度解释断裂现象
  • 批准号:
    23740101
  • 财政年份:
    2011
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
geometric structure of nonlinearity and singularity of solutions for wave equations
波动方程解的非线性和奇异性的几何结构
  • 批准号:
    22740088
  • 财政年份:
    2010
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了