Regularity and stability results in variational problems

规律性和稳定性导致变分问题

基本信息

  • 批准号:
    1262411
  • 负责人:
  • 金额:
    $ 50.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This mathematics research project by Alessio Figalli is focused on several problems in the calculus of variations and partial differential equations. These include the optimal transport problem, the issue of stability in functional inequalities, and the Mumford-Shah functional. The optimal transport problem consists of finding the least expensive way to transport a distribution of mass from one place to another. In addition to being a natural problem in the calculus of variations, it is also related to partial differential equations, Riemannian geometry, and probability. The issue of stability in functional inequalities consists of understanding whether a minimizer of some inequality is stable in some suitable sense. This is an important issue in order to understand and/or predict the evolution in time of a physical phenomenon. For instance, quantitative stability results are used to quantify the rate of convergence of a given physical system to its steady state, and they can also be used to understand the extent to which the system changes under the influence of external factors (for instance, external forces). The Mumford-Shah functional is a classical model in image segmentation which is used to extract from a blurry image the meaningful discontinuities (which correspond to edges of objects, shadows, and overlapping objects). The regularity properties of minimizers of the Mumford-Shah functional are still far from being understood, and understanding the smoothness of the interfaces and their topological properties is an important and challenging problem.All the problems investigated in this mathematics research project by Alessio Figalli have important applications in other areas of sciences. For instance, the optimal transport problem is a fundamental problem in economics, with further applications to meteorology, biology, and population dynamics; the Mumford-Shah functional, which is studied in this project, has applications to image processing (it allows to extract good images out of blurry ones). Some of the problems in this project will be used in the training of undergraduate students, graduate students and postdoctoral fellows. Several of Figalli's PhD students and postdoctoral fellows will engage in research in these areas, and the results obtained will be widely disseminated via the publication of research papers and lecture notes, as well as through the development of courses and seminars.
Alessio Figalli的这个数学研究项目专注于变分法和偏微分方程中的几个问题。这些问题包括最优运输问题、泛函不等式的稳定性问题和Mumford-Shah泛函。最优运输问题包括找到最便宜的方式将质量分布从一个地方运输到另一个地方。除了是变分法中的一个自然问题外,它还与偏微分方程、黎曼几何和概率有关。函数不等式的稳定性问题包括理解某个不等式的极小元是否在某种适当的意义下是稳定的。这是一个重要的问题,以便理解和/或预测物理现象的演变。例如,定量稳定性结果用于量化给定物理系统向其稳定状态的收敛速率,并且它们还可以用于理解系统在外部因素(例如,外力)影响下的变化程度。Mumford-Shah泛函是图像分割中的经典模型,用于从模糊图像中提取有意义的不连续性(对应于对象的边缘,阴影和重叠对象)。Mumford-Shah泛函极小解的正则性还远未被人们所理解,而了解其界面的光滑性及其拓扑性质是一个重要而又具有挑战性的问题,Alessio Figalli在这个数学研究项目中所研究的问题在其他科学领域都有重要的应用。例如,最优运输问题是经济学中的一个基本问题,并进一步应用于气象学,生物学和人口动力学;本项目中研究的Mumford-Shah泛函可应用于图像处理(它可以从模糊图像中提取出好的图像)。 本项目中的部分问题将用于本科生、研究生和博士后的培养。几个Figalli的博士生和博士后研究员将从事这些领域的研究,所获得的成果将通过研究论文和演讲稿的出版,以及通过课程和研讨会的开发广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Maggi其他文献

Isoperimetric Residues and a Mesoscale Flatness Criterion for Hypersurfaces with Bounded Mean Curvature
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
A remark on Serrin’s Theorem
A New Approach to Counterexamples to L1 Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions
Rigidity and large volume residues in exterior isoperimetry for convex sets
凸集外等周问题中的刚性和大体积残差
  • DOI:
    10.1016/j.aim.2024.109833
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Nicola Fusco;Francesco Maggi;Massimiliano Morini;Michael Novack
  • 通讯作者:
    Michael Novack

Francesco Maggi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Maggi', 18)}}的其他基金

Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
  • 批准号:
    2247544
  • 财政年份:
    2023
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
  • 批准号:
    2000034
  • 财政年份:
    2020
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
  • 批准号:
    1854344
  • 财政年份:
    2019
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
  • 批准号:
    1840314
  • 财政年份:
    2019
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
  • 批准号:
    1565354
  • 财政年份:
    2017
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
  • 批准号:
    1361122
  • 财政年份:
    2014
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
  • 批准号:
    1265910
  • 财政年份:
    2013
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
  • 批准号:
    82371638
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
PPFS调节多倍体水稻花粉育性的功能研究
  • 批准号:
    31140033
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
关于铁磁链方程组的解的部分正则性的研究
  • 批准号:
    10926050
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
计算电磁学高稳定度辛算法研究
  • 批准号:
    60931002
  • 批准年份:
    2009
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
  • 批准号:
    40872203
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
铝合金中新型耐热合金相的应用基础研究
  • 批准号:
    50801067
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于系统轨迹灵敏度的电力市场下最佳安全运行算法研究
  • 批准号:
    50377028
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
  • 批准号:
    10614928
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
Stem cell-loaded microgels to treat discogenic low back pain
装载干细胞的微凝胶可治疗椎间盘源性腰痛
  • 批准号:
    10398627
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
  • 批准号:
    10380567
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Discovery Grants Program - Individual
OUTLAST - A First Multiple-Dose Efficacy Study of IXT-m200, an anti-METH Monoclonal Antibody, in Patients with METH Use Disorder
OUTLAST - IXT-m200(一种抗冰毒单克隆抗体)在冰毒使用障碍患者中的​​首次多剂量疗效研究
  • 批准号:
    10399794
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2020
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2019
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2018
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Discovery Grants Program - Individual
Results and Potentials of Decentralized Development: Comparative Studies of 29 States in India to Understand the Shape for Democratic Stability
去中心化发展的结果和潜力:印度 29 个邦的比较研究,了解民主稳定的形态
  • 批准号:
    17H01636
  • 财政年份:
    2017
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2017
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了